Browse all cheatsheets

Elektroniske systemer
Elektroniske systemer

En rask referanseguide for binære tall, konverteringer, addisjon og subtraksjon. Perfekt for studenter og profesjonelle innen datateknikk og elektronikk.

Syndicate loans
Syndicate loans

This cheat sheet provides a detailed overview of syndicated loans, including their structure, key players, facility types, and trading aspects. It serves as a quick reference for understanding the complexities of syndicated lending.

Syndicate loans
Syndicate loans

A quick reference guide to syndicated loans, covering key concepts, roles, facility types, and processes. Includes a diagram illustrating the structure of a syndicated loan.

Jeremy's Nervous System
Jeremy's Nervous System

A concise guide to the human nervous system, covering its structure, function, and key components like the auditory, visual, and motor systems.

Nervous System
Nervous System

A concise guide to the human nervous system, covering its structure, functions, and key components. This cheat sheet provides a quick reference for students, healthcare professionals, and anyone interested in understanding the complexities of neural communication and control.

Angular component communication
Angular component communication

A comprehensive guide to Angular component communication, covering various techniques from basic to advanced, including best practices for managing data flow and preventing memory leaks.

TypeScript CheatSheet Basic to Advance
TypeScript CheatSheet Basic to Advance

A comprehensive TypeScript cheat sheet covering basic to advanced concepts, including types, functions, classes, generics, utility types, and best practices.

Blank Project
Blank Project

A quick reference guide covering essential kinematics concepts, formulas, and graphs.

ML Cheatsheet
ML Cheatsheet

A comprehensive cheat sheet covering various machine learning algorithms, including supervised, unsupervised, semi-supervised, and reinforcement learning, along with deep learning architectures.

ML Cheatsheet
ML Cheatsheet

βœ… 1. Supervised Learning β€’ Regression o Linear Regression o Logistic Regression o Polynomial Regression o Ridge Regression o Lasso Regression o ElasticNet o Support Vector Machines (SVM) o Decision Trees o Random Forest β€’ Classification o Logistic Regression o K-Nearest Neighbors (KNN) o Support Vector Machines (SVM) o Decision Trees o Random Forest o Naive Bayes o Confusion Matrix o Stochastic Gradient Descent o Gradient Boosting o AdaBoost o XGBoost o LightGBM o CatBoost ________________________________________ πŸ” 2. Unsupervised Learning β€’ Clustering πŸ”Ή 1. Centroid-Based Clustering β€’ K-Means β€’ K-Medoids β€’ Mean-Shift ________________________________________ πŸ”Ή 2. Density-Based Clustering β€’ DBSCAN β€’ OPTICS β€’ HDBSCAN ________________________________________ πŸ”Ή 3. Hierarchical Clustering β€’ Agglomerative Clustering β€’ BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) β€’ Affinity Propagation ________________________________________ πŸ”Ή 4. Distribution-Based Clustering β€’ Gaussian Mixture Models (GMM) β€’ Dimensionality Reduction o PCA (Principal Component Analysis) o t-SNE o UMAP o ICA (Independent Component Analysis) o LDA (Linear Discriminant Analysis) ________________________________________ πŸ” 3. Semi-Supervised Learning β€’ Self-Training β€’ Label Propagation β€’ Label Spreading ________________________________________ πŸ”„ 4. Reinforcement Learning β€’ Q-Learning β€’ Deep Q-Networks (DQN) β€’ SARSA β€’ Policy Gradient Methods β€’ Actor-Critic β€’ Proximal Policy Optimization (PPO) β€’ Deep Deterministic Policy Gradient (DDPG) ________________________________________ 🧠 5. Deep Learning Algorithms πŸ”Ή 1. Feedforward Networks (FNN) β€’ Multilayer Perceptron (MLP) β€’ Deep Neural Networks (DNN) ________________________________________ πŸ”Ή 2. Convolutional Neural Networks (CNN) β€’ LeNet β€’ AlexNet β€’ VGGNet β€’ GoogLeNet (Inception) β€’ ResNet β€’ DenseNet β€’ EfficientNet β€’ MobileNet β€’ SqueezeNet ________________________________________ πŸ”Ή 3. Recurrent Neural Networks (RNN) β€’ Vanilla RNN β€’ Long Short-Term Memory (LSTM) β€’ Gated Recurrent Unit (GRU) β€’ Bidirectional RNN β€’ Deep RNNs β€’ Echo State Networks (ESN) ________________________________________ πŸ”Ή 4. Attention-Based Models / Transformers β€’ Transformer β€’ BERT β€’ GPT (GPT-1, GPT-2, GPT-3, GPT-4) β€’ RoBERTa β€’ ALBERT β€’ XLNet β€’ T5 β€’ DistilBERT β€’ Vision Transformer (ViT) β€’ Swin Transformer β€’ DeiT β€’ Performer β€’ Longformer ________________________________________ πŸ”Ή 5. Autoencoders β€’ Vanilla Autoencoder β€’ Sparse Autoencoder β€’ Denoising Autoencoder β€’ Contractive Autoencoder β€’ Variational Autoencoder (VAE) ________________________________________ πŸ”Ή 6. Generative Adversarial Networks (GANs) β€’ Vanilla GAN β€’ Deep Convolutional GAN (DCGAN) β€’ Conditional GAN (cGAN) β€’ CycleGAN β€’ StyleGAN β€’ Pix2Pix β€’ BigGAN β€’ StarGAN β€’ WGAN (Wasserstein GAN) β€’ WGAN-GP ________________________________________ πŸ”Ή 7. Reinforcement Learning (Deep RL) β€’ Deep Q-Network (DQN) β€’ Double DQN β€’ Dueling DQN β€’ Policy Gradient β€’ REINFORCE β€’ Actor-Critic β€’ A3C (Asynchronous Advantage Actor-Critic) β€’ PPO (Proximal Policy Optimization) β€’ DDPG (Deep Deterministic Policy Gradient) β€’ TD3 (Twin Delayed DDPG) β€’ SAC (Soft Actor-Critic)

ML Cheatsheet
ML Cheatsheet

A comprehensive cheat sheet covering core machine learning algorithms, evaluation metrics, and essential concepts for interview preparation. Includes supervised, unsupervised learning, deep learning and NLP.