Browse all cheatsheets

Nervous System
Nervous System

A concise guide to the human nervous system, covering its structure, functions, and key components. This cheat sheet provides a quick reference for students, healthcare professionals, and anyone interested in understanding the complexities of neural communication and control.

Angular component communication
Angular component communication

A comprehensive guide to Angular component communication, covering various techniques from basic to advanced, including best practices for managing data flow and preventing memory leaks.

TypeScript CheatSheet Basic to Advance
TypeScript CheatSheet Basic to Advance

A comprehensive TypeScript cheat sheet covering basic to advanced concepts, including types, functions, classes, generics, utility types, and best practices.

Blank Project
Blank Project

A quick reference guide covering essential kinematics concepts, formulas, and graphs.

ML Cheatsheet
ML Cheatsheet

A comprehensive cheat sheet covering various machine learning algorithms, including supervised, unsupervised, semi-supervised, and reinforcement learning, along with deep learning architectures.

ML Cheatsheet
ML Cheatsheet

✅ 1. Supervised Learning • Regression o Linear Regression o Logistic Regression o Polynomial Regression o Ridge Regression o Lasso Regression o ElasticNet o Support Vector Machines (SVM) o Decision Trees o Random Forest • Classification o Logistic Regression o K-Nearest Neighbors (KNN) o Support Vector Machines (SVM) o Decision Trees o Random Forest o Naive Bayes o Confusion Matrix o Stochastic Gradient Descent o Gradient Boosting o AdaBoost o XGBoost o LightGBM o CatBoost ________________________________________ 🔍 2. Unsupervised Learning • Clustering 🔹 1. Centroid-Based Clustering • K-Means • K-Medoids • Mean-Shift ________________________________________ 🔹 2. Density-Based Clustering • DBSCAN • OPTICS • HDBSCAN ________________________________________ 🔹 3. Hierarchical Clustering • Agglomerative Clustering • BIRCH (Balanced Iterative Reducing and Clustering using Hierarchies) • Affinity Propagation ________________________________________ 🔹 4. Distribution-Based Clustering • Gaussian Mixture Models (GMM) • Dimensionality Reduction o PCA (Principal Component Analysis) o t-SNE o UMAP o ICA (Independent Component Analysis) o LDA (Linear Discriminant Analysis) ________________________________________ 🔁 3. Semi-Supervised Learning • Self-Training • Label Propagation • Label Spreading ________________________________________ 🔄 4. Reinforcement Learning • Q-Learning • Deep Q-Networks (DQN) • SARSA • Policy Gradient Methods • Actor-Critic • Proximal Policy Optimization (PPO) • Deep Deterministic Policy Gradient (DDPG) ________________________________________ 🧠 5. Deep Learning Algorithms 🔹 1. Feedforward Networks (FNN) • Multilayer Perceptron (MLP) • Deep Neural Networks (DNN) ________________________________________ 🔹 2. Convolutional Neural Networks (CNN) • LeNet • AlexNet • VGGNet • GoogLeNet (Inception) • ResNet • DenseNet • EfficientNet • MobileNet • SqueezeNet ________________________________________ 🔹 3. Recurrent Neural Networks (RNN) • Vanilla RNN • Long Short-Term Memory (LSTM) • Gated Recurrent Unit (GRU) • Bidirectional RNN • Deep RNNs • Echo State Networks (ESN) ________________________________________ 🔹 4. Attention-Based Models / Transformers • Transformer • BERT • GPT (GPT-1, GPT-2, GPT-3, GPT-4) • RoBERTa • ALBERT • XLNet • T5 • DistilBERT • Vision Transformer (ViT) • Swin Transformer • DeiT • Performer • Longformer ________________________________________ 🔹 5. Autoencoders • Vanilla Autoencoder • Sparse Autoencoder • Denoising Autoencoder • Contractive Autoencoder • Variational Autoencoder (VAE) ________________________________________ 🔹 6. Generative Adversarial Networks (GANs) • Vanilla GAN • Deep Convolutional GAN (DCGAN) • Conditional GAN (cGAN) • CycleGAN • StyleGAN • Pix2Pix • BigGAN • StarGAN • WGAN (Wasserstein GAN) • WGAN-GP ________________________________________ 🔹 7. Reinforcement Learning (Deep RL) • Deep Q-Network (DQN) • Double DQN • Dueling DQN • Policy Gradient • REINFORCE • Actor-Critic • A3C (Asynchronous Advantage Actor-Critic) • PPO (Proximal Policy Optimization) • DDPG (Deep Deterministic Policy Gradient) • TD3 (Twin Delayed DDPG) • SAC (Soft Actor-Critic)

ML Cheatsheet
ML Cheatsheet

A comprehensive cheat sheet covering core machine learning algorithms, evaluation metrics, and essential concepts for interview preparation. Includes supervised, unsupervised learning, deep learning and NLP.

ML
ML

A concise cheat sheet outlining the key concepts, algorithms, and differences between supervised and unsupervised learning methods in machine learning.

My Ruby on Rails tips & tricks
My Ruby on Rails tips & tricks

List of useful tips & tricks that I'm collecting

Category Theory
Category Theory

A comprehensive cheat sheet covering monoidal category theory, its prerequisites, string diagrams, and compact closed categories. Useful for students and researchers in mathematics, physics, and computer science.

databases
databases

A comprehensive cheat sheet covering database concepts, ER modeling, table creation, data population, and querying using SQL. From understanding databases to crafting advanced queries, this guide provides a quick reference for database design and manipulation.