Catalog / Physics Essentials Cheatsheet

Physics Essentials Cheatsheet

A concise physics cheat sheet covering fundamental concepts, formulas, and laws across mechanics, thermodynamics, electromagnetism, and optics. Ideal for quick reference and exam preparation.

Mechanics

Kinematics

Displacement

\Delta x = x_f - x_i

Average Velocity

v_{avg} = \frac{\Delta x}{\Delta t}

Average Acceleration

a_{avg} = \frac{\Delta v}{\Delta t}

Constant Acceleration

v = v_0 + at

Constant Acceleration

x = x_0 + v_0t + \frac{1}{2}at^2

Constant Acceleration

v^2 = v_0^2 + 2a(x - x_0)

Projectile Motion (y)

y = v_{0y}t - \frac{1}{2}gt^2

Projectile Motion (x)

x = v_{0x}t

Dynamics

Newton’s Second Law

\Sigma F = ma

Weight

W = mg

Friction (Kinetic)

f_k = \mu_k N

Friction (Static)

f_s \le \mu_s N

Centripetal Force

F_c = \frac{mv^2}{r}

Work and Energy

Work

W = Fd\cos\theta

Kinetic Energy

KE = \frac{1}{2}mv^2

Potential Energy (Gravitational)

PE_g = mgh

Potential Energy (Spring)

PE_s = \frac{1}{2}kx^2

Power

P = \frac{W}{\Delta t}

Work-Energy Theorem

W_{net} = \Delta KE

Thermodynamics

Basic Concepts

Temperature Conversion (Celsius to Kelvin)

T(K) = T(°C) + 273.15

Thermal Expansion (Linear)

\Delta L = \alpha L_0 \Delta T

Thermal Expansion (Volume)

\Delta V = \beta V_0 \Delta T

Heat and Specific Heat

Heat Transfer

Q = mc\Delta T

Latent Heat

Q = mL

Thermodynamic Processes

First Law of Thermodynamics

\Delta U = Q - W

Work (Isobaric Process)

W = P\Delta V

Adiabatic Process

PV^\gamma = constant

Electromagnetism

Electrostatics

Coulomb’s Law

F = k \frac{|q_1q_2|}{r^2}

Electric Field

E = \frac{F}{q}

Electric Potential

V = \frac{k q}{r}

Potential Energy

U = qV

Circuits

Ohm’s Law

V = IR

Power (Electrical)

P = IV = I^2R = \frac{V^2}{R}

Series Resistance

R_{eq} = R_1 + R_2 + ...

Parallel Resistance

\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + ...

Capacitance

C = \frac{Q}{V}

Magnetism

Magnetic Force on a Moving Charge

F = qvB\sin\theta

Magnetic Force on a Current-Carrying Wire

F = ILB\sin\theta

Optics

Wave Optics

Index of Refraction

n = \frac{c}{v}

Snell’s Law

n_1 \sin\theta_1 = n_2 \sin\theta_2

Critical Angle

\theta_c = \sin^{-1}(\frac{n_2}{n_1})

Geometric Optics

Thin Lens Equation

\frac{1}{f} = \frac{1}{d_o} + \frac{1}{d_i}

Magnification

M = -\frac{d_i}{d_o}