
ETC3550
Concise notes for forecasting exams, covering key concepts, methods, and models based on "Forecasting: Principles and Practice (3rd ed)".

Fundamentals & Time Series Decomposition

Simple Forecasting Methods

Exponential Smoothing Methods

Forecasting Principles

Forecast Error: Difference between observed and

predicted values.

Residuals: Forecast errors for the training data.

Goals: Minimize forecast error, avoid bias, and

capture patterns.

Bias: Systematic difference between forecasts

and actual values. Indicated by non-zero mean

error.

Forecast Distribution: Use simulations of the

future to develop forecast distributions

Overfitting: Fitting model too closely to the

training data, results in poor performance on new

data.

Underfitting: Model is too simple to capture

patterns in the data

Time Series Components

Additive

Decomposition:

Data = Trend +

Seasonal + Random

Multiplicative

Decomposition:

Data = Trend * Seasonal

* Random

Trend: Long-term

direction of the

series.

Seasonal: Regular,

predictable variations

that recur over a fixed

period.

Cyclic: Fluctuations

around the trend,

usually over a longer

period than

seasonality.

Random: Irregular,

unpredictable variations.

Classical

Decomposition:

Method for

decomposing a time

series into its

components (trend,

seasonal, and

irregular).

STL Decomposition:

Versatile and robust

method for

decomposing time series

data, handling both

additive and

multiplicative

seasonality, as well as

complex seasonal

patterns.

Time Series Plots

Seasonal Plot: Data are grouped by season (e.g.,

months or quarters) and plotted to highlight

seasonal patterns, showing how the series varies

within each season.

Time Plot: Time series data are plotted against

time, revealing trends, seasonality, and cyclical

patterns over time.

Scatter Plot: Data points are plotted as individual

points to visualize the relationship between two

variables, such as the series and its lagged values,

helping to identify autocorrelation and patterns.

Autocorrelation Function (ACF): Measures the

correlation between a time series and its lagged

values, revealing the strength and significance of

autocorrelation at different lags.

Partial Autocorrelation Function (PACF):

Measures the correlation between a time series

and its lagged values after removing the effects

of intermediate lags, isolating the direct

relationship between the series and each lag.

Basic Methods

Average Method: Forecast all future values using the average of historical

data.

Formula: \hat{y}_{t+h|t} = \bar{y} = (y_1 + y_2 + ... + y_T) / T

Naive Method: Forecast equals the last observed value.

Formula: \hat{y}_{t+h|t} = y_t

Seasonal Naive Method: Forecast equals the last observed value from the

same season.

Formula: \hat{y}_{t+h|t} = y_{t+h-m(k+1)}, where m is the seasonal period

and k is the integer part of (h-1)/m

Drift Method: Forecast is the last value plus an average change over time.

Formula: \hat{y}_{t+h|t} = y_t + h \frac{y_T - y_1}{T-1}

Residual Diagnostics

Assumptions about residuals: Uncorrelated, mean zero, constant variance,

normally distributed.

Plots: Time series plot, histogram, ACF plot.

Tests: Ljung-Box test.

Ljung-Box Test: Tests whether a group of autocorrelations of a time series

are different from zero.

Q^* = T(T+2) \sum_{k=1}^h r_k^2(e)

Simple Exponential Smoothing (SES)

Suitable for: Data with no trend or seasonality.

Formula: \hat{y}_{t+1|t} = \alpha y_t + (1 - \alpha)

\hat{y}_{t|t-1}

\alpha: Smoothing constant (0 < \alpha < 1).

Higher values give more weight to recent

observations.

Initialization: \hat{y}_{1|0} can be set to y_1 or

the average of the first few observations.

Holt's Linear Trend Method

Suitable for: Data with a trend but no seasonality.

Equations:

Level: \ell_t = \alpha y_t + (1 - \alpha) (\ell_{t-1} +

b_{t-1})

Trend: b_t = \beta^* (\ell_t - \ell_{t-1}) + (1 -

\beta^*) b_{t-1}

Forecast: \hat{y}_{t+h|t} = \ell_t + h b_t

\alpha: Smoothing constant for the level.

\beta^*: Smoothing constant for the trend.

Initialization: \ell_0 and b_0 can be estimated

using linear regression on the historical data.

Damped Trend Methods

Damped Trend Methods: Similar to Holt’s

method, but the trend is damped over time.

Formula: \hat{y}_{t+h|t} = \ell_t + (\phi + \phi^2 +

... + \phi^h)b_t

Level: \ell_t = \alpha y_t + (1-\alpha)(\ell_{t-1} +

\phi b_{t-1})

Trend: b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 -

\beta^*)\phi b_{t-1}

\phi: Damping parameter (0 < \phi < 1). As h

increases, the forecast approaches \ell_T +

\frac{\phi}{1-\phi} b_T.
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ARIMA Models

Holt-Winters' Seasonal Method

Suitable for: Data with both trend and

seasonality. Can be additive or multiplicative.

Additive: \hat{y}_{t+h|t} = \ell_t + hb_t + s_{t+h-

m(k+1)}

Level: \ell_t = \alpha(y_t - s_{t-m}) + (1 - \alpha)

(\ell_{t-1} + b_{t-1})

Trend: b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 -

\beta^*)b_{t-1}

Seasonal: s_t = \gamma (y_t - \ell_{t-1} - b_{t-1})

+ (1-\gamma)s_{t-m}

Multiplicative: \hat{y}_{t+h|t} = (\ell_t +

hb_t)s_{t+h-m(k+1)}

Level: \ell_t = \alpha(y_t / s_{t-m}) + (1 - \alpha)

(\ell_{t-1} + b_{t-1})

Trend: b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 -

\beta^*)b_{t-1}

Seasonal: s_t = \gamma (y_t / (\ell_{t-1} + b_{t-

1})) + (1-\gamma)s_{t-m}

Parameters: \alpha, \beta^*, \gamma are

smoothing constants (0 < \alpha, \beta^*,

\gamma < 1).

Initialization: Requires initial estimates for level,

trend, and seasonal components.

ARIMA Model Components

AR(p): Autoregressive model of order p. Uses

past values to predict future values.

MA(q): Moving average model of order q. Uses

past forecast errors to predict future values.

I(d): Integrated component of order d.

Represents the number of differences required to

make the time series stationary.

Stationarity: A time series is stationary if its

statistical properties (mean, variance,

autocorrelation) do not change over time.

Differencing: Used to make a time series

stationary. First difference: y'_t = y_t - y_{t-1}.

Seasonal difference: y'_t = y_t - y_{t-m}

Model Selection

ACF and PACF Plots: Used to identify the order

of AR and MA components.

Information Criteria: AIC, AICc, BIC. Lower values

indicate better model fit.

AIC (Akaike Information Criterion): AIC = -2

\log(L) + 2k, where L is the likelihood and k is the

number of parameters.

AICc (Corrected AIC): AICc = AIC +

\frac{2k(k+1)}{T-k-1}, where T is the number of

observations.

BIC (Bayesian Information Criterion): BIC = -2

\log(L) + k \log(T)

ARIMA Model Equations

AR(p) Model: y_t = c + \phi_1 y_{t-1} + \phi_2

y_{t-2} + ... + \phi_p y_{t-p} + e_t

MA(q) Model: y_t = c + e_t + \theta_1 e_{t-1} +

\theta_2 e_{t-2} + ... + \theta_q e_{t-q}

ARIMA(p,d,q) Model: Combines AR(p), I(d), and

MA(q) components. Requires differencing the

series d times to achieve stationarity.
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