CHEATHERO n SHEETSHERO A

A concise cheat sheet covering essential foundation maths concepts for quick review and exam preparation.

Algebra Basics & Order of Operations

Algebraic Formulas

Expanding Brackets: a(b + c) = ab + ac	Example: $2(x + 3) = 2x + 6$
Factoring: ab + ac = a(b + c)	Example: $3y + 6 =$ 3(y + 2)
Difference of Squares: $a^2 - b^2 = (a + b)$ (a - b)	Example: $x^2 - 9 =$ (x + 3)(x - 3)
Perfect Square Trinomial: $(a + b)^2 =$ $a^2 + 2ab + b^2$	Example: $(x + 2)^2$ = $x^2 + 4x + 4$
Perfect Square Trinomial: (a - b)^2 = a^2 - 2ab + b^2	Example: $(x - 3)^2$ = $x^2 - 6x + 9$
Distributive Property: (a(b+c) = ab + ac)	Useful for expanding and simplifying expressions.

Order of Operations (PEMDAS/BODMAS)

Parentheses / Brackets	
Exponents / Orders	
Multiplication and Division (from left to right) Addition and Subtraction (from left to right)	
Example: 2 + 3 * 4 = 2 + 12 = 14	
Example: (2 + 3) * 4 = 5 * 4 = 20	

Evaluating Algebraic Expressions

Substitute values into the expression.	Example: Evaluate 2x + 3 when x = 5 2(5) + 3 = 10 + 3 = 13
Follow the order of operations.	Example: Evaluate x^2 - 4 when $x = -2$ $(-2)^2 - 4 = 4 - 4 = 0$

Fractions, Ratios & Percentages

Fractions

				_
Equivalent Fractions	quivalent actionsMultiply or divide both numerator and denominator by the same number. 	Ratios	Express a relationship between two quantities. Can be written as (a:b), (a to b), or (a/b).	Co Pe
Comparing Fractions		Unit Conversion (Money)	Use conversion factors to change units. Example: If £1 = \$1.20, then £5 = \$6.00	Pe
1	1/4	Proportions	Two ratios that are equal to	
OperationsAddition/Subtraction: Commonwithdenominator needed.FractionsMultiplication: Multiply numerators and denominators. Division: Invert the second fraction and multiply.	Addition/Subtraction: Common denominator needed.		each other. Example: a/b = c/d	Fir a F
			Pe Vo	
Improper Fractions	Numerator is greater than or equal to the denominator. Convert to mixed number for			Dr
	easier understanding.			PI
Simplifying Fractions	Divide numerator and denominator by their greatest common divisor (GCD).			

Ratios & Unit Conversion (Money)

Multiply the fraction onverting Fractions to by 100. ercentages Example: 1/4 = (1/4) * 100% = 25%ercentage Increase [(New Value -Original Value) / Original Value] * 100% nding the Whole from Whole = Part / Part and a Percentage (Percentage / 100) ercentages and Calculate a percentage olume/Capacity of a given volume or capacity. Example: 20% of 500ml = (20/100) * 500ml = 100ml ofit Calculation Profit = Revenue -Cost . Profit Margin = (Profit / Revenue) * 100%

Geometry & Data Analysis

Pythagorean Theorem

Formula	$a^2 + b^2 = c^2$ (where 'c' is the hypotenuse)
Applications	Finding the length of a side in a right-angled triangle.
Example	If $a = 3$ and $b = 4$, then $c = sqrt(3^2 + 4^2) = 5$

Decimal Places & Ordering Numbers

Counting the number of digits after the decimal point.
5 or more, raise the score. 4 or less, let it rest.
Compare the values from left to right.
Start counting from the first non-zero digit.

Data Analysis

Percentages

	Mean: Average of all values. Sum of values divided by the number of values.
	Median: Middle value when data is ordered. If there are two middle values, it's their average.
	Interquartile Range (IQR): Difference between the upper quartile (Q3) and the lower quartile (Q1). IQR = Q3 - Q1
	Box Plots: A visual representation of data distribution, showing the median, quartiles, and outliers

Graphs & Coordinate Geometry

Gradients

Formula	<pre>Gradient (m) = (Change in y) / (Change in x) = (y2 - y1) / (x2 - x1)</pre>
Positive Gradient	Line slopes upwards from left to right.
Negative Gradient	Line slopes downwards from left to right.
Zero Gradient	Horizontal line.
Undefined Gradient	Vertical line.

Quadrants

A coordinate plane is divided into four quadrants:

Quadrant I: (+x, +y)
Quadrant II: (-x, +y)
Quadrant III: (-x, -y)
Quadrant IV: (+x, -y)

Applying Geometric Principles to Algebraic Expressions

Area of a rectangle	Area = length * width
Area of a triangle	Area = (1/2) * base * height
Volume of a cube	Volume = side^3