

A comprehensive cheat sheet covering key concepts in engineering, including scientific literacy, introductory chemistry, and engineering biology. Useful for students and professionals alike.

Scientific Literacy & Physical Quantities

Uncertainty and Conservation Laws

Managing Uncertainty	Conservation Laws		
 Types of Uncertainty: Random Uncertainty: Statistical fluctuations. Systematic Uncertainty: Consistent errors in measurement. 	Systems: Defined region of space or quantity of matter under study.	Conservation Laws: Fundamental principles stating that certain physical quantities remain constant over time.	
Representing Uncertainty: Use standard deviation, confidence intervals, or error bars to quantify	Types: Open, closed, and isolated systems.	Examples: Conservation of mass, energy, and momentum.	
uncertainty in measurements. Propagating Uncertainty: Use appropriate statistical methods to determine how uncertainty in input variables affects the uncertainty in calculated results.	Mass conservation states that mass cannot be created or destroyed in a closed system. Expressed mathematically as: \sum m_{in} = \sum m_{out} + \Delta m_{system}.	Energy conservation states that energy cannot be created or destroyed, only transformed. Expressed mathematically as: \Delta E = Q - W where Q is heat added and W is work done by the system.	

Introductory Chemistry

Composition of Matter

Chemical Reactions

States of Matter: Solid, liquid, gas, and plasma.	Moles: Unit of amount of substance (6.022 x 10^23 particles).	Chemical Equations: Symbolic representation of a chemical reaction.	Ideal Gas Law: PV = nRT, where P is pressure, V is
Mixtures: Combinations of substances that are physically combined (homogeneous and heterogeneous).			volume, n is the number of moles, R is the ideal gas constant, and T is temperature.
			Partial Pressure: Pressure exerted by a single gas
Atoms: Basic building blocks of matter.	Molar Mass: Mass of one mole of a substance.	of a Attractive forces holding	in a mixture of gases.
Periodic Table: Arrangement of elements based on their atomic number and chemical properties.			Dalton's Law of Partial Pressures states that the total pressure of a gas mixture is the sum of the partial pressures of each individual gas: P_{total}
	Balancing chemicalExamples: Single, dequations ensuresand triple bonds.mass conservation.	Examples: Single, double, and triple bonds.	= P_1 + P_2 + + P_n
Energy & Engineering Biology			

Energy Concepts

Energy: Capacity to do work.	Enthalpy (H): Thermodynamic property that is the sum of the internal energy and the product of pressure and volume: H = U + PV Exothermic reactions release heat (ΔH < 0).	ermodynamic property at is the sum of the ernal energy and the oduct of pressure and(ΔH): Change in enthalpy during a chemical reaction.	Living Systems: Complex systems exhibiting
Power: Rate at which energy is transferred or converted.			properties like metabolism, growth, and reproduction.
Energy, Heat, and Work: Heat is energy transferred due to temperature difference. Work			Cellular Respiration and Metabolism: Processes by which cells convert nutrients into energy.
is energy transferred when a force causes displacement.		Energy use contributes to	Anatomy and Physiology: Study of the structure and function of living organisms.
Energy Conservation: Energy cannot be created or destroyed, only converted from one form to another. Endothermic react absorb heat (ΔH > absorb h	Endothermic reactions absorb heat ($\Delta H > 0$).	ons global warming	
	Consideration for sustainable energy practices is crucial.	Global warming is caused by increasing concentration of	

greenhouse gases.

Enthalpy and Applications

Ideal Gases

Living Systems & Human Physiology