
Ruby Debugging Cheatsheet & Tips
A comprehensive guide to debugging Ruby code using built-in tools, Pry, and Byebug. This cheat sheet covers essential commands, techniques, and best

practices to efficiently identify and resolve issues in your Ruby applications.

Basic Debugging Techniques

Using `puts` and `p`

puts - Prints a string to the console, often used

for simple debugging.

Example:

x = 5

puts "=" * 10

puts "Value of x: #{x}" # Output: Value

of x: 5

puts "=" * 10

p - Prints a more detailed representation of an

object, including its class.

Example:

arr = [1, 2, 3]

p arr # Output: [1, 2, 3]

pp - Pretty prints objects for better readability

(requires require 'pp').

Example:

require 'pp'

hash = {a: 1, b: {c: 2, d: 3}}

pp hash

Backtraces

Understanding backtraces is crucial for

pinpointing the source of errors. Ruby provides

detailed information about the call stack when an

exception occurs.

Example:

def a

 b

end

def b

 raise 'Boom!'

end

a # This will generate a backtrace

Analyzing a Backtrace:

The topmost line indicates the exception

type and message.

Subsequent lines show the call stack, with

the most recent call at the top.

Each line includes the file name, line number,

and method name.

Don’t be afraid to generate exceptions to

debug code

Logging

Using Ruby’s built-in Logger class can help

track program execution and variable states.

Example:

require 'logger'

logger = Logger.new(STDOUT)

logger.level = Logger::DEBUG # Set log

level (DEBUG, INFO, WARN, ERROR, FATAL)

x = 10

logger.debug "Value of x: #{x}"

Log Levels:

DEBUG : Detailed information, useful for

debugging.

INFO : General information about the

application’s operation.

WARN : Potentially harmful situations.

ERROR : Error events that might still allow

the application to continue running.

FATAL : Severe errors that cause the

application to terminate.

Inspecting Methods with `method`

The method(:method_name) syntax allows you to obtain a Method object, enabling introspection and

advanced debugging techniques.

Accessing Method Objects:

str = "hello"

method_object = str.method(:upcase)

puts method_object.call # => "HELLO"

Retrieving Method Source Location:

This returns an array containing the file path and line number where the method is defined.

method_object = String.method(:new)

puts method_object.source_location # => ["string.rb", 42]

Handling Methods Defined in C:

For methods implemented in C, source_location will return nil .

method_object = 1.method(:+) # Example of a C implemented method

puts method_object.source_location # => nil

Method Caller

caller method:

Returns an array of strings representing the call

stack. Each string describes a single method call,

including the file name, line number, and method

name.

Basic usage:

def my_method

 caller

end

my_method # => ["/path/to/file.rb:2:in

`my_method'", ...]

caller(n) :

Returns only the n most recent calls. Useful for

limiting the output when the call stack is very

deep.

Page 1 of 6 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/igor-kasyanchuk/944-ruby-debugging-cheatsheet-tips
http://cheatsheetshero.com/user/igor-kasyanchuk/944-ruby-debugging-cheatsheet-tips
http://cheatsheetshero.com/user/igor-kasyanchuk/944-ruby-debugging-cheatsheet-tips
https://cheatsheetshero.com/

Using method with Pry for Debugging:

Within a Pry session, method can be used to quickly inspect methods.

Inside Pry:

require 'pry'

def my_method(arg1, arg2)

 binding.pry

 arg1 + arg2

end

my_method(5, 3)

method(:my_method).source_location # => ["/path/to/your/file.rb", 3]

Inspecting Method Parameters:

The parameters method provides information about a method’s arguments.

This shows required, optional, rest, and keyword arguments.

def some_method(a, b = 1, *c, d: 2)

 # method body

end

method(:some_method).parameters # => [[:req, :a], [:opt, :b], [:rest, :c], [:keyreq,

:d]]

Limiting the output:

def method_a

 method_b

end

def method_b

 caller(1)

end

method_a # => ["/path/to/file.rb:5:in

`method_b'"]

caller_locations :

Returns an array of

Thread::Backtrace::Location objects,

providing more structured information than

strings.

Using caller_locations :

def my_method

 caller_locations

end

loc = my_method.first

loc.path # => "/path/to/file.rb"

loc.lineno # => 2

loc.label # => "my_method"

Filtering the call stack:

You can use grep or other array methods to

filter the caller output to find specific method

calls or files.

Filtering example:

def my_method

 caller.grep(/my_gem/)

end

Using caller for debugging:

Insert puts caller or puts

caller_locations at strategic points to trace

the execution path of your code.

Be aware of performance:

Avoid using caller in production code due to

its performance overhead. It’s primarily a

debugging tool.

Stop when you need

Stop based on some conditions

or

user = some_method

debugger if user.name == 'John'

user = some_method

debugger if $some_variable

and set it in some place

$some_variable = true

Hash/JSON

If you need to print Hash or JSON in a nice way

You can also use “pp” method or gems like

awesome_print.

Rails.logger.debug(JSON.pretty_generate(

params.permit!.to_h))

Page 2 of 6 https://cheatsheetshero.com

https://cheatsheetshero.com/

Debugging with Debug gem

Getting Started with Debug Gem

To start using the Debug gem, first add it to your

Gemfile:

Then run bundle install to install it.

gem 'debug'

Require the Debug gem in your application with:

require 'debug'

To initiate a debugging session, insert the

following line into your code where you want to

start debugging:

debugger

Run your Ruby script. Execution will pause at the

debugger line, and you’ll enter the debug

console.

Ensure you’re running your Ruby application with

bundle exec if launching with Bundler to

include the gems in the environment.

Use debugger(do: "...") to execute a

command and continue execution after hitting a

breakpoint.

This will print local variables and then continue

the program.

debugger(do: "info locals")

Use debugger(pre: "...") to execute a

command upon hitting a breakpoint, before

entering the console.

This will print local variables and then open the

console.

debugger(pre: "info locals")

These options help automate common

debugging tasks and reduce manual steps.

Navigation Commands

next - Execute the next line of code.

Moves to the next line within the same context,

stepping over method calls.

step - Step into the method.

Executes the next line of code, stepping into any

methods on the line.

continue or c - Resume program execution.

This will continue running the program until the

next breakpoint.

finish - Execute until the current method

returns.

This is useful for quickly skipping over long

methods.

break <line> - Set a breakpoint at a specific

line.

Example: break 42 will pause execution when

line 42 is reached.

Inspection Commands

list - Display the code around the current line.

Useful to see the surrounding context.

p or print <expression> - Evaluate and print

an expression.

Example: p user.name to check the current

name of the user object.

display <expression> - Automatically show

the value of an expression every time the

debugger pauses.

info <subcommand> - Show information about

the program state.

For example, info variables lists all local

variables and their values.

frame - Display the current call stack frame.

You can also use frame up and frame down to

navigate the stack.

Breakpoints Management

break <line> - Set a breakpoint at a given line

number.

Example: break 15 sets a breakpoint at line 15.

break if <condition> - Conditional

breakpoint.

Stops execution when the specified condition is

true. Example: break if x > 5 .

delete <breakpoint_number> - Remove a

specific breakpoint.

Use delete 1 to remove the first breakpoint.

enable <breakpoint_number> - Enable a

disabled breakpoint.

Example: enable 2 .

disable <breakpoint_number> - Temporarily

disable a breakpoint without removing it.

Utilize disable 3 to deactivate the third

breakpoint.

Additional Commands

quit or exit - Terminate the debugging

session.

irb - Open an interactive Ruby shell within the

current context.

history - Display previous commands entered

in the session.

trace - Print a trace of function calls on each

line.

Activate tracing with specific options as needed.

eval <expression> - Evaluate Ruby code in the

current context.

Example: eval 'puts Hello, world!' .

Page 3 of 6 https://cheatsheetshero.com

https://cheatsheetshero.com/

Debugging with Pry

Pry Basics

Pry is a powerful alternative to irb that

provides enhanced debugging capabilities.

Installation:

gem install pry

To start a Pry session, insert binding.pry into

your code.

Example:

require 'pry'

def my_method(arg)

 binding.pry # Execution pauses here

 puts arg

end

my_method('Hello, Pry!')

Common Pry Commands

ls List variables and methods in

the current scope.

cd <object> Change the current context to

the given object.

whereami Show the current location in

the code.

show-source

<method>

Display the source code of a

method.

exit or

Ctrl+D

Exit the Pry session.

help Display help information.

Advanced Pry Features

Pry supports command aliases, allowing you to

create shortcuts for frequently used commands.

Example:

Now you can use w instead of whereami .

Pry.config.alias_command 'w', 'whereami'

Pry integrates well with other debugging tools

like pry-byebug for step-by-step execution.

Page 4 of 6 https://cheatsheetshero.com

https://cheatsheetshero.com/

Debugging with Byebug

Byebug Basics

Byebug is a powerful debugger for Ruby that

allows you to step through code, set breakpoints,

and inspect variables.

Installation:

gem install byebug

To start debugging, insert byebug into your

code where you want to pause execution.

Example:

require 'byebug'

def my_method(arg)

 byebug # Execution pauses here

 puts arg

end

my_method('Hello, Byebug!')

Common Byebug Commands

next or n Execute the next line of code.

step or s Step into a method call.

continue or

c

Continue execution until the

next breakpoint or the end of the

program.

break

<location>

or b

<location>

Set a breakpoint at the specified

location (e.g., 5 ,

my_file.rb:10).

info Display information about the

current state.

display

<expression

>

Automatically display the value

of an expression each time the

debugger stops.

p

<expression

>

Print the value of an expression.

quit or q Exit the debugger.

Conditional Breakpoints

Byebug allows you to set breakpoints that are

only triggered when a certain condition is met.

Example:

break 10 if x > 5 # Break at line 10

only if x is greater than 5

Page 5 of 6 https://cheatsheetshero.com

https://cheatsheetshero.com/

Debugging Best Practices

General Tips

1. Understand the Problem: Before diving into

debugging, make sure you fully understand

the problem you’re trying to solve.

Reproduce the issue and identify the steps

that lead to it.

2. Write Tests: Tests can help you isolate and

reproduce bugs. Write unit tests to verify the

behavior of individual components and

integration tests to ensure that different

parts of your application work together

correctly.

3. Use Version Control: Regularly commit your

code to version control. This allows you to

easily revert to previous versions and

compare changes to identify the source of

bugs.

Debugging Workflow

1. Start with Logging: Add logging statements

to track the flow of execution and the values

of important variables.

2. Use a Debugger: When logging isn’t enough,

use a debugger like Byebug or Pry to step

through the code and inspect the state of

the application.

3. Isolate the Issue: Try to narrow down the

source of the bug by commenting out code

or simplifying the problem.

4. Read Error Messages: Pay close attention to

error messages and backtraces. They often

provide valuable clues about the cause of the

problem.

Advanced Debugging Techniques

1. Remote Debugging: Debug code running on

a remote server by connecting to the server

with a debugger.

2. Profiling: Use profiling tools to identify

performance bottlenecks in your code.

3. Memory Analysis: Analyze memory usage to

detect and fix memory leaks.

Profiling and Performance Gems

ruby-prof

A fast, accurate Ruby profiler, providing detailed performance reports

for Ruby code.

Offers call stack, flat, and graph profiles to pinpoint bottlenecks.

stackprof

A sampling call-stack profiler for Ruby, designed for speed and low

overhead.

Captures stack samples to identify frequently called methods, helping optimize

performance-critical sections.

memory_profiler

A gem to profile memory usage in Ruby apps, identifying memory

leaks and allocations.

Provides insights into object allocation, retention, and garbage collection behavior,

crucial for memory optimization.

benchmark

A standard library module for benchmarking Ruby code snippets.

Allows timing of code execution, comparing performance of different approaches,

and identifying performance regressions.

bullet

A gem to help increase your Rails application’s performance by

reducing the number of queries it makes.

Alerts you to N+1 queries, unused eager loading, and suggests solutions.

rack-mini-profiler

A middleware that displays speed badge for every html page, showing

overall load time.

Provides detailed information about request performance, including SQL queries, view

rendering, and more, directly in the browser.

derailed_benchmarks

A series of things you can use to benchmark different parts of your

Rails or Ruby app.

Includes tools to measure memory usage, object allocations, and garbage collection

performance.

wrapped_print

My own gem to print values of objects to the console, without typing

“puts” or “logger.debug”.

Prints value of the object without modifying it.

(this .wp will print the result of find_user method)

user = find_user.wp

Page 6 of 6 https://cheatsheetshero.com

https://github.com/ruby-prof/ruby-prof
https://github.com/tmm1/stackprof
https://github.com/SamSaffron/memory_profiler
https://ruby-doc.org/stdlib-3.1.2/libdoc/benchmark/rdoc/Benchmark.html
https://github.com/flyerhzm/bullet
https://github.com/MiniProfiler/rack-mini-profiler
https://github.com/zombocom/derailed_benchmarks
https://github.com/igorkasyanchuk/wrapped_print
https://cheatsheetshero.com/

