
Advanced Active Record
Unlock advanced Active Record techniques with our concise cheatsheet for expert Rails developers. Covering complex queries, associations, eager loading, validations,

and performance optimizations, this guide boosts your Rails app efficiency with practical examples and best practices.

Advanced Querying and Relation Chaining

Basic Querying

where - Adds conditions to the query.

Examples:

User.where(name: 'John')

User.where('age > ?', 20)

User.where(created_at: (Time.now.midnight -

1.day)..Time.now.midnight)

order - Specifies the order of the result set.

Examples:

User.order(:name) # Ascending order

User.order(age: :desc) # Descending order

User.order('name DESC, age ASC')

limit - Limits the number of records returned.

Example:

User.limit(10)

offset - Specifies the number of records to skip.

Example:

User.offset(30)

select - Specifies which columns to retrieve.

Examples:

User.select(:id, :name)

User.select('id, name, email')

Advanced `where` Conditions

where.not - Excludes records matching the

condition.

Example:

User.where.not(name: 'John')

where(id: [1, 2, 3]) - Using an array for IN

queries.

Example:

User.where(id: [1, 2, 3])

where('name LIKE ?', '%John%') - Using LIKE for

pattern matching.

Example:

User.where('name LIKE ?', '%John%')

where(age: nil) - Finding records with NULL

values.

Example:

User.where(age: nil)

User.where.not(age: nil)

where('age > ? AND city = ?', 25, 'New

York') - Complex AND conditions.

Example:

User.where('age > ? AND city = ?', 25, 'New

York')

where('age > ? OR city = ?', 25, 'New York')

- Complex OR conditions.

Example:

User.where('age > ? OR city = ?', 25, 'New

York')

Aggregation Methods

count - Returns the number of records.

Examples:

User.count

User.where(age: 25).count

average - Calculates the average value of a column.

Example:

User.average(:age)

minimum - Returns the minimum value of a column.

Example:

User.minimum(:age)

maximum - Returns the maximum value of a column.

Example:

User.maximum(:age)

sum - Calculates the sum of a column.

Example:

User.sum(:age)

Grouping and Having

group - Groups records based on a column.

Example:

User.group(:city).count

having - Adds conditions to the grouped results.

Example:

User.group(:city).having('COUNT(*) > 10')

Example: Grouping users by city and finding cities

with more than 5 users.

User.select(:city, 'COUNT(*) AS

user_count').group(:city).having('COUNT(*) >

5')

Page 1 of 31 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/igor-kasyanchuk/932-advanced-active-record-cheatsheet
http://cheatsheetshero.com/user/igor-kasyanchuk/932-advanced-active-record-cheatsheet
http://cheatsheetshero.com/user/igor-kasyanchuk/932-advanced-active-record-cheatsheet
https://cheatsheetshero.com/

Pluck, Pick and Distinct

pluck - Retrieves specific columns as an array.

Examples:

User.pluck(:name) # Returns an array of names

User.pluck(:id, :name) # Returns an array of [id,

name] pairs

distinct - Ensures only unique values are returned.

Example:

User.distinct.pluck(:city)

Combining distinct and pluck to get a unique

list of cities.

User.distinct.pluck(:city)

pick - Retrieves a single attribute value from the

database.

Examples:

User.where(name: 'John').pick(:id) # Returns

the ID of the first user named John

User.where(active: true).pick(:email) #

Returns the email of the first active user

Using pick with order to retrieve the email of

the newest user.

User.order(created_at: :desc).pick(:email)

Combining pick with conditions.

Product.where('price > ?', 100).pick(:name)

Eager Loading (N+1 Problem)

includes - Eager loads associated records.

Example:

User.includes(:posts) # Loads users and their

posts in one query

preload - Similar to includes but uses separate

queries.

Example:

User.preload(:posts)

eager_load - Uses a LEFT OUTER JOIN to eager

load.

Example:

User.eager_load(:posts)

Using includes with multiple associations.

Example:

User.includes(:posts, :comments)

Specifying conditions when eager loading.

Example:

User.includes(posts: { comments: :author

}).where('posts.published = ?', true)

Scopes

Defining a simple scope.

class User < ApplicationRecord

 scope :active, -> { where(active: true) }

end

Using a scope with parameters.

class User < ApplicationRecord

 scope :older_than, ->(age) { where('age >

?', age) }

end

Calling a scope.

User.active # Returns active users

User.older_than(25) # Returns users older

than 25

Default scopes.

class User < ApplicationRecord

 default_scope { order(created_at: :desc) }

end

Removing default scope with unscoped .

User.unscoped.all # Ignores the default

scope

Combining scopes.

User.active.older_than(20)

Existence and Association

where.missing(association)

Find records where the specified association does

not exist.

Example:

Find all users without any posts:

User.where.missing(:posts)

where.associated(association)

Find records where the specified association does

exist.

Example:

Find all users who have at least one post:

User.where.associated(:posts)

Combining where.missing with conditions

Filter records where an association is missing and

apply other conditions.

Example:

Find users without posts and whose status is ‘active’:

User.where(status:

'active').where.missing(:posts)

Using where.associated with conditions

Filter records where an association exists and apply

additional criteria.

Example:

Find users with posts that were created in the last

week:

User.where.associated(:posts).where(posts: {

created_at: 1.week.ago..Time.now })

where.missing with nested associations

Find records where a nested association does not

exist.

Example:

Find categories that have no products with active

reviews:

Category.where.missing(products:

:reviews).where(reviews: { status: 'active'

})

where.associated with nested associations

Find records where a nested association exists.

Example:

Find categories that have products with at least one

review:

Category.where.associated(products:

:reviews)

Chaining where.associated for multiple

associations

Ensure multiple associations exist for a given record.

Example:

Find articles that have both comments and tags:

Article.where.associated(:comments).where.as

sociated(:tags)

Chaining where.missing for multiple associations

Page 2 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Ensure multiple associations are absent for a given

record.

Example:

Find users who don’t have profiles and don’t have

orders:

User.where.missing(:profile).where.missing(:

orders)

Optimizing where.missing with indexes

Ensure appropriate indexes are in place on foreign

key columns for performance.

Best Practice:

Index the user_id column in the posts table.

Optimizing where.associated with indexes

Ensure appropriate indexes are in place on foreign

key columns for performance.

Best Practice:

Index the category_id column in the products

table.

Using exists? with where.associated

Check if any associated records exist without loading

them.

Example:

Check if any users have associated posts:

User.where.associated(:posts).exists?

Page 3 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced Active Record with Arel

Introduction to Arel

Arel is a SQL AST (Abstract Syntax Tree) manager for

Ruby. It simplifies the generation of complex SQL

queries, offering a more Ruby-like syntax.

It’s especially useful when Active Record’s query

interface becomes insufficient for your needs.

Arel provides a way to build SQL queries

programmatically using Ruby objects that represent

SQL components (tables, columns, predicates, etc.).

Arel is typically used behind the scenes by Active

Record, but you can also use it directly to construct

more intricate queries.

By using Arel, you bypass the Active Record query

interface and directly manipulate the SQL query that

will be executed against the database.

Arel is particularly useful when you need to perform

complex joins, subqueries, or conditional queries that

are difficult to express using Active Record’s standard

methods.

Basic Arel Usage

Create a table object
table =

Arel::Table.new(:user

s)

Access a column
column = table[:id]

Build a select query
query =

table.project(table[:

name])

Add a where clause
query =

query.where(table[:ag

e].gt(18))

Compile the query to

SQL
sql = query.to_sql

=> SELECT

"users"."name" FROM

"users" WHERE

("users"."age" > 18)

Execute the query

using Active Record

connection

results =

ActiveRecord::Base.co

nnection.execute(sql)

Advanced Query Building

Combining Predicates:

You can combine predicates using and and or to

create more complex conditions.

users = Arel::Table.new(:users)

query =

users.where(users[:active].eq(true).and(user

s[:age].gt(18)))

Using Joins:

Arel simplifies creating joins between tables. Use

join method and specify the join type using on .

users = Arel::Table.new(:users)

orders = Arel::Table.new(:orders)

join =

users.join(orders).on(users[:id].eq(orders[:

user_id]))

query = users.project(users[:name],

orders[:order_date]).join(join)

Subqueries:

Arel allows embedding subqueries into your main

queries using the as method to alias the subquery.

subquery =

Arel::SelectManager.new(Arel::Table.engine)

subquery.from(Arel::Table.new(:orders)).proj

ect(Arel.star.count.as('order_count')).where

(Arel::Table.new(:orders)[:user_id].eq(1))

users = Arel::Table.new(:users)

query = users.project(users[:name],

subquery.as('user_orders'))

Common Arel Predicates

eq Equal to.

not_eq Not equal to.

gt Greater than.

gteq Greater than or equal to.

lt Less than.

lteq Less than or equal to.

in Value is in a set.

not_in Value is not in a set.

matches Pattern matching (LIKE).

does_not_matc

h

Negated pattern matching (NOT

LIKE).

cont For ransack gem. Contains value.

Arel with Active Record

Integrating Arel with Active Record allows you to use

complex Arel queries within your Rails models.

class User < ApplicationRecord

 def self.complex_query

 users = Arel::Table.new(:users)

 query =

users.where(users[:active].eq(true).and(user

s[:age].gt(18)))

 User.from(users.where(query.where_sql))

 end

end

You can then call this method like any other scope or

class method on your model.

users = User.complex_query

This approach provides a clean and maintainable way

to incorporate raw SQL or Arel-based queries into

your Active Record models.

Page 4 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced Associations

Has Many Through Association

The has_many :through association is used to

create a many-to-many relationship with another

model through a join model. This allows you to easily

query across multiple tables.

Defining the Association:

class Doctor < ApplicationRecord

 has_many :appointments

 has_many :patients, through: :appointments

end

class Patient < ApplicationRecord

 has_many :appointments

 has_many :doctors, through: :appointments

end

class Appointment < ApplicationRecord

 belongs_to :doctor

 belongs_to :patient

end

Explanation:

Doctors have many patients through

appointments.

Patients have many doctors through

appointments.

Appointments belong to both doctors and

patients.

This setup allows you to easily query doctors for their

patients and vice versa.

Example Usage:

doctor = Doctor.find(1)

patients = doctor.patients # Returns all

patients associated with the doctor

Self-Referential Associations

A self-referential association is where a model has a

relationship with itself. This is commonly used for

hierarchical data, such as categories or employee

hierarchies.

Example - Employee Hierarchy:

class Employee < ApplicationRecord

 belongs_to :manager, class_name:

'Employee', optional: true

 has_many :employees, foreign_key:

:manager_id

end

Explanation:

belongs_to :manager establishes that an

employee belongs to a manager, which is

another employee.

has_many :employees establishes that an

employee can have many employees reporting to

them.

class_name: 'Employee' specifies that the

association is with the Employee model itself.

foreign_key: :manager_id specifies the

column in the employees table that stores the

manager’s ID.

Example Usage:

employee = Employee.find(1)

manager = employee.manager # Returns the

employee's manager

subordinates = employee.employees # Returns

all employees who report to this employee

Polymorphic Associations

Polymorphic associations allow a model to belong to

multiple other models, on a single association. A

common use case is for comments that can belong

to either articles or events.

Defining the Association:

class Comment < ApplicationRecord

 belongs_to :commentable, polymorphic: true

end

class Article < ApplicationRecord

 has_many :comments, as: :commentable

end

class Event < ApplicationRecord

 has_many :comments, as: :commentable

end

Explanation:

belongs_to :commentable, polymorphic:

true indicates that the comment can belong to

any model, specified by the commentable_type

and commentable_id columns.

has_many :comments, as: :commentable

defines the other end of the polymorphic

association in the Article and Event models.

Database Migration:

When using polymorphic associations, ensure your

database migration includes the necessary columns:

create_table :comments do |t|

 t.text :content

 t.references :commentable, polymorphic:

true, index: true

 t.timestamps

end

Example Usage:

article = Article.find(1)

comment = article.comments.create(content:

'Great article!')

event = Event.find(1)

comment = event.comments.create(content:

'Exciting event!')

Page 5 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Association Scopes

Association scopes allow you to customize the data

retrieved through an association using a block or a

lambda. This is useful for filtering or ordering

associated records.

Using a Block:

class User < ApplicationRecord

 has_many :active_orders, -> {

where(status: 'active') }, class_name:

'Order'

end

Explanation:

This defines an association active_orders that

only retrieves orders with a status of ‘active’.

class_name: 'Order' specifies that the

association is with the Order model.

Using a Lambda:

class User < ApplicationRecord

 has_many :recent_orders, -> {

order(created_at: :desc).limit(5) },

class_name: 'Order'

end

Explanation:

This defines an association recent_orders that

retrieves the 5 most recently created orders,

ordered by created_at in descending order.

Example Usage:

user = User.find(1)

active_orders = user.active_orders # Returns

only active orders for the user

recent_orders = user.recent_orders # Returns

the 5 most recent orders for the user

Inverse Of

The inverse_of option in associations informs

Active Record about the inverse association, allowing

it to use cached objects and avoid unnecessary

database queries. This can significantly improve

performance.

Example:

class Post < ApplicationRecord

 belongs_to :author, inverse_of: :posts

 has_many :comments, inverse_of: :post

end

class Author < ApplicationRecord

 has_many :posts, inverse_of: :author

end

class Comment < ApplicationRecord

 belongs_to :post, inverse_of: :comments

end

Explanation:

inverse_of: :posts in the belongs_to

:author association tells Active Record that the

author association in the Post model is the

inverse of the posts association in the

Author model.

Similarly, inverse_of: :author in the

has_many :posts association informs Active

Record about the inverse relationship.

Benefits:

Improved Performance: Active Record can use

cached objects instead of querying the database

when the inverse association is already loaded.

Data Consistency: Changes made to one side of

the association are automatically reflected on

the other side.

Usage Notes:

inverse_of should be used in both sides of the

association.

It works best with belongs_to and has_many

associations.

Association Callbacks

Association callbacks are methods that are triggered

when adding or removing associated objects. These

are useful for maintaining data integrity or performing

actions related to the association.

Available Callbacks:

before_add

after_add

before_remove

after_remove

Example:

class Author < ApplicationRecord

 has_many :books, before_add:

:check_book_count, after_add:

:log_book_addition, before_remove:

:check_book_removal

 private

 def check_book_count(book)

 if self.books.count >= 10

 raise 'Author cannot have more than 10

books'

 end

 end

 def log_book_addition(book)

 Rails.logger.info "Book #{book.title}

added to author #{self.name}"

 end

 def check_book_removal(book)

 puts "Removing #{book.title} from #

{self.name}"

 end

end

Explanation:

before_add: :check_book_count is called

before a book is added to the author’s books

collection. If the author already has 10 books, it

raises an error.

after_add: :log_book_addition is called

after a book is added to the author’s books

collection. It logs the addition of the book.

before_remove :check_book_removal is called

before a book is removed from the author’s book

collection.

Usage Notes:

Callbacks receive the associated object as an

argument.

before_add and before_remove can halt the

addition or removal by raising an exception.

Page 6 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Eager Loading Strategies in Rails

Understanding the N+1 Query Problem

The N+1 query problem occurs when Active Record

executes one query to fetch a collection of records

(the ‘1’ query), and then executes N additional queries

to fetch associated records for each of the initial

records. This can significantly degrade performance.

Example:

Without eager loading

posts = Post.all

posts.each do |post|

 puts post.user.name # Triggers a new query

for each post to fetch the user

end

In the above example, if there are 100 posts, it will

result in 1 (Post.all) + 100 (post.user) queries. This is

highly inefficient.

Eager loading is a technique to reduce the number of

queries by pre-loading the associated records, thus

mitigating the N+1 problem.

Eager Loading with `includes`

includes is the most common and recommended

way to perform eager loading in Rails. It tells Active

Record to fetch the associated records in as few

queries as possible.

Example:

posts = Post.includes(:user)

posts.each do |post|

 puts post.user.name # Accessing user does

not trigger a new query

end

includes intelligently decides whether to use

LEFT OUTER JOIN or separate queries based on the

associations. Generally, it uses LEFT OUTER JOIN

for simple associations and separate queries for more

complex associations or when preloading multiple

associations.

You can specify multiple associations to be eager

loaded:

posts = Post.includes(:user, :comments)

You can also eager load nested associations:

posts = Post.includes(user: :profile)

Using where clause with includes:

posts = Post.includes(:user).where(users: {

active: true })

Eager Loading with `preload`

preload is another method for eager loading that

always uses separate queries for each association. It

is less intelligent than includes but can be useful in

specific scenarios.

Example:

posts = Post.preload(:user)

posts.each do |post|

 puts post.user.name # Accessing user does

not trigger a new query

end

Unlike includes , preload doesn’t use joins. It

always performs separate queries to load the

associated records.

When to use preload :

When you explicitly want separate queries.

When dealing with complex associations where

includes might not be optimal.

Multiple associations with preload:

posts = Post.preload(:user, :comments)

Nested associations with preload:

posts = Post.preload(user: :profile)

Eager Loading with `eager_load`

eager_load forces Active Record to use a LEFT

OUTER JOIN to fetch associated records. It is more

restrictive than includes and preload .

Example:

posts = Post.eager_load(:user)

posts.each do |post|

 puts post.user.name # Accessing user does

not trigger a new query

end

eager_load always uses LEFT OUTER JOIN ,

regardless of the complexity of the association.

When to use eager_load :

When you specifically want to use LEFT OUTER

JOIN .

When you need to filter based on the associated

records in the same query.

Using where clause with eager_load:

posts = Post.eager_load(:user).where(users:

{ active: true })

Multiple associations with eager_load:

posts = Post.eager_load(:user, :comments)

Comparison of Eager Loading Methods

Method Behavior

includes Chooses between LEFT OUTER

JOIN or separate queries based

on the association.

preload Always uses separate queries.

eager_load Always uses LEFT OUTER JOIN .

Recommendation includes is generally

preferred due to its flexibility

and intelligence.

Practical Tips and Considerations

Always profile your queries to identify N+1 issues.

Tools like bullet gem can help detect these

problems in development.

Use eager loading judiciously. Over-eager loading can

also impact performance by fetching unnecessary

data.

Consider using pluck when you only need specific

attributes from associated records instead of loading

the entire object.

When dealing with large datasets, be mindful of

memory consumption when eager loading. You might

need to batch your queries or use more advanced

techniques like custom SQL.

Always check the generated SQL queries to

understand how Active Record is fetching the data.

You can use to_sql method to inspect the query.

posts = Post.includes(:user).where(users:

{active: true })

puts posts.to_sql #print generated SQL

Page 7 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced Scopes

Lambda Scopes

Lambda scopes allow you to define reusable query

logic.

Syntax:

Example:

scope :scope_name, -> { where(condition:

true) }

class User < ApplicationRecord

 scope :active, -> { where(active: true) }

 scope :inactive, -> { where(active: false)

}

end

Using lambda scopes with arguments:

Syntax:

Example:

scope :scope_name, ->(argument) {

where(column: argument) }

class Product < ApplicationRecord

 scope :expensive_than, ->(price) {

where('price > ?', price) }

end

Calling lambda scopes:

User.active # Returns all active users

Product.expensive_than(100) # Returns all

products with price > 100

Lambda scopes are lazy loaded; the query is not

executed until you call it.

This allows for further chaining and composition.

Chaining Scopes

Scopes can be chained together to create more

complex queries.

Example:

Chaining scopes:

class User < ApplicationRecord

 scope :active, -> { where(active: true) }

 scope :admin, -> { where(role: 'admin') }

end

User.active.admin # Returns all active admin

users

Chaining with conditions:

User.active.where(age: 18..65) # Returns

active users between 18 and 65

Combining scope and class methods:

class User < ApplicationRecord

 scope :active, -> { where(active: true) }

 def self.search(query)

 where('name LIKE ?', "%#{query}%")

 end

end

User.active.search('john') # Returns active

users with 'john' in their name

Careful with ordering; the order of chained scopes

can affect the final query.

Example:

User.order(:age).active # Order by age

first, then filter active users

Dynamic Scopes

Dynamic scopes are method-based finders that allow

you to create queries based on method names.

Example:

User.find_by_name('John') # Finds a user

with the name 'John'

Using dynamic scopes with multiple attributes:

User.find_by_name_and_active('John', true)

Finds a user with name 'John' and active

status true

Dynamic scopes also work for find_or_create_by

and find_or_initialize_by :

User.find_or_create_by_name('John')

Finds a user with name 'John' or creates

one if it doesn't exist

Be cautious with dynamic scopes as they can lead to

security vulnerabilities if user input is directly used in

the method name.

It is recommended to use strong parameters to

sanitize inputs.

Extending Active Record with custom methods

You can extend ActiveRecord::Base to add custom

methods to all your models. This is typically done in

an initializer.

config/initializers/active_record_extensions

.rb

ActiveSupport.on_load(:active_record) do

 module ActiveRecord

 module Extensions

 def awesome_method

 puts "This is awesome!"

 end

 end

 include Extensions

 end

end

After defining the extension, it will be available in all

your models:

class User < ApplicationRecord

end

User.new.awesome_method # => "This is

awesome!"

Use this approach sparingly to keep models focused

and avoid polluting the base class with too many

unrelated methods.

Eager Loading

Eager loading helps prevent N+1 queries by loading

associated records in a single query.

Syntax:

Example:

Model.includes(:association)

User.includes(:posts).where(active: true)

Loads all users and their posts in two

queries instead of N+1 queries

Eager loading multiple associations:

User.includes(:posts, :comments)

Loads users, posts, and comments in a

minimal number of queries

Nested eager loading:

User.includes(posts: [:comments])

Loads users, their posts, and the comments

for each post

Using preload instead of includes forces

separate queries for each association. Useful when

includes generates complex queries.

User.preload(:posts)

Using eager_load performs a LEFT OUTER JOIN,

which can be more efficient but may lead to data

duplication if not used carefully.

User.eager_load(:posts)

Page 8 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced querying with joins

Using joins to create more specific queries.

This will return all articles that have approved

comments.

Article.joins(:comments).where('comments.app

roved = ?', true)

You can also specify LEFT OUTER JOINS for

including records even when the association is not

present.

Article.joins('LEFT OUTER JOIN comments ON

comments.article_id =

articles.id').group('articles.id')

Complex example using joins with custom SQL:

This returns all users that are members of the ‘admins’

group.

User.joins("INNER JOIN user_groups ON

users.id = user_groups.user_id INNER JOIN

groups ON groups.id =

user_groups.group_id").where("groups.name =

'admins'")

Page 9 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced Active Record Callbacks

Conditional Callbacks

if option Specifies a symbol, string, or Proc. The callback will only be

executed if this evaluates to true.

before_save :normalize_name, if: :name_changed?

unless option Similar to if , but the callback will only be executed if the

condition evaluates to false.

after_create :send_welcome_email, unless:

:welcome_email_sent?

Using symbols Referencing a method defined in the model.

private

def name_changed?

 name_previously_changed?

end

Using strings A string that will be evaluated in the context of the model.

before_validation :ensure_name_has_value, if:

"name.blank?"

Using Procs A Proc object that is called. Useful for more complex

conditions.

before_create :set_creation_date, if: Proc.new {

|record| record.created_at.nil? }

Combining if and

unless

It’s generally best to avoid using both if and unless for

the same callback, as it can become confusing.

Avoid this:

before_save :do_something, if: :condition1,

unless: :condition2

Ordered Callbacks

Callback execution

order

Callbacks are generally executed in the order they are

defined.

In this case, callback_one will be executed before

callback_two .

before_validation :callback_one

before_validation :callback_two

Impact of

halted_callback_

hook

If a before_* callback returns false , it halts the

execution of subsequent callbacks and the action. This can

affect the order in which validations or other logic is

applied.

Explicit Ordering

(gem)

Gems like active_record-orderable can provide more

explicit control over the order of callback execution if the

default order is insufficient. (Not a standard Rails feature.)

Testing Callback

Order

Write tests to ensure callbacks are firing in the expected

order, especially when the order is critical for data integrity

or application logic.

it 'executes callbacks in the correct order' do

 expect(instance).to

receive(:callback_one).ordered

 expect(instance).to

receive(:callback_two).ordered

 instance.run_callbacks :validation

end

Dependencies

Between Callbacks

If one callback depends on the result of another, ensure the

dependency is clear and the order is correct. Refactor if the

dependencies become too complex.

Debugging Callback

Order

Use Rails.logger.debug statements within the callbacks

to trace their execution order during development.

Alternatively, use a debugger.

Page 10 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Custom Callback Patterns

Creating Custom Callback

Methods

Define methods that encapsulate specific logic to be executed during a particular lifecycle event.

class User < ApplicationRecord

 before_create :generate_token

 private

 def generate_token

 self.token = SecureRandom.hex(10)

 end

end

Using Observers Observers are a way to extract callback logic into separate classes, promoting separation of concerns. However, observers are deprecated

in Rails 5.1 and removed in Rails 6.

Deprecated in Rails 5.1, removed in Rails 6

class UserObserver < ActiveRecord::Observer

 def after_create(user)

 #...

 end

end

Service Objects Move complex logic out of the model and into service objects. Callbacks can then trigger these service objects.

class CreateUser

 def self.call(user_params)

 user = User.new(user_params)

 if user.save

 WelcomeEmailService.new(user).send

 end

 end

end

class User < ApplicationRecord

 after_create :call_welcome_email_service

 private

 def call_welcome_email_service

 WelcomeEmailService.new(self).send

 end

end

Asynchronous Callbacks Use after_commit with on: :create , on: :update , or on: :destroy to perform actions after the database transaction is

complete. Useful for sending emails or triggering other external processes.

after_commit :send_welcome_email, on: :create

Callback Chains Create methods that trigger other methods, allowing for a sequence of actions during a callback.

before_save :process_data

private

def process_data

 step_one

 step_two

 step_three

end

Page 11 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

State Machines Use state machine gems (like aasm or statesman) to manage complex state transitions and trigger callbacks based on those transitions.

include AASM

aasm do

 state :idle, initial: true

 state :running

 event :start do

 transitions from: :idle, to: :running, after: :do_something

 end

end

Auditing changes Implement callbacks to track changes to model attributes, logging the changes for auditing purposes. Gems like paper_trail simplify

this.

using PaperTrail

has_paper_trail

Page 12 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Validations

Custom Validators

Create custom validators to encapsulate complex

validation logic.

Example:

class EmailValidator <

ActiveModel::EachValidator

 def validate_each(record, attribute,

value)

 unless value =~ /\A[^@\s]+@([^@\s]+\.)+

[^@\s]+\z/

 record.errors.add attribute,

(options[:message] || "is not an email")

 end

 end

end

class Person < ApplicationRecord

 validates :email, presence: true, email:

true

end

Using validates_with :

class GoodnessValidator <

ActiveModel::Validator

 def validate(record)

 if record.first_name == "Evil"

 record.errors.add :base, "This person

is evil"

 end

 end

end

class Person < ApplicationRecord

 validates_with GoodnessValidator

end

Custom validators can accept options:

class ExclusionValidator <

ActiveModel::EachValidator

 def validate_each(record, attribute,

value)

 if options[:in].include?(value)

 record.errors.add attribute,

(options[:message] || "is reserved")

 end

 end

end

class Person < ApplicationRecord

 validates :username, exclusion: { in:

%w(admin superuser) }

 validates :age, exclusion: { in: 30..60,

message: 'is not allowed' }

end

Conditional Validations

Execute validations only under certain conditions

using :if and :unless .

Example: Validate postal_code only if country is

‘USA’.

class Address < ApplicationRecord

 validates :postal_code, presence: true,

if: :is_usa?

 def is_usa?

 country == 'USA'

 end

end

Using :unless :

class Article < ApplicationRecord

 validates :body, presence: true, unless:

:is_published?

 def is_published?

 published

 end

end

Using :if with a Proc:

class Person < ApplicationRecord

 validates :email, presence: true, if:

Proc.new { |p| p.age > 18 }

end

Using :unless with a Proc:

class Event < ApplicationRecord

 validates :description, presence: true,

unless: Proc.new { |e| e.name.blank? }

end

Validating Associations

Validate associated records using

validates_associated .

Example: Validate associated Address when saving

a Person .

class Person < ApplicationRecord

 has_one :address

 validates_associated :address

end

class Address < ApplicationRecord

 belongs_to :person

 validates :street, presence: true

end

Customize the validation process with :on option:

class Project < ApplicationRecord

 has_many :tasks

 validates_associated :tasks, on: :create

end

Use with custom validation methods:

class Order < ApplicationRecord

 has_many :line_items

 validate :validate_line_items

 private

 def validate_line_items

 line_items.each do |item|

 errors.add(:base, "Invalid line item")

unless item.valid?

 end

 end

end

Page 13 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Custom Validation Methods

Define custom validation methods for more complex

logic.

Example: A method that checks if the discount is

valid based on the order total.

class Order < ApplicationRecord

 validate :discount_is_valid

 private

 def discount_is_valid

 if discount > total

 errors.add(:discount, "cannot be

greater than total")

 end

 end

end

Using multiple attributes:

class Booking < ApplicationRecord

 validate :check_availability

 private

 def check_availability

 if start_date >= end_date

 errors.add(:start_date, "must be

before end date")

 errors.add(:end_date, "must be after

start date")

 end

 end

end

Adding errors to specific attributes:

class Product < ApplicationRecord

 validate :check_price

 private

 def check_price

 if price <= 0

 errors.add(:price, "must be greater

than zero")

 end

 end

end

Conditional Validation Groups

Group validations and conditionally apply them.

Example: Validate fields required for admin users

only.

class User < ApplicationRecord

 with_options if: :is_admin? do

 validates :employee_id, presence: true

 validates :department, presence: true

 end

 def is_admin?

 role == 'admin'

 end

end

Using with_options with multiple conditions:

class Article < ApplicationRecord

 with_options if: Proc.new { |a|

a.published? && a.premium? } do

 validates :premium_content, presence:

true

 validates :access_code, presence: true

 end

end

Combining with custom validators:

class Event < ApplicationRecord

 with_options if: :is_special_event? do

 validates :special_requirements,

presence: true

 validates_with SpecialEventValidator

 end

end

Page 14 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Transactions and Nested Transactions for Data Integrity

Transactions

Transactions are used to ensure data integrity by

grouping multiple operations into a single atomic

unit. If any operation fails, the entire transaction is

rolled back, preventing partial updates.

Basic Transaction:

ActiveRecord::Base.transaction do

 account.update!(balance: account.balance -

100)

 log.create!(message: 'Withdrawal of $100')

end

If account.update! or log.create! raises an

exception, the entire transaction is rolled back, and

no changes are persisted.

Handling Exceptions:

ActiveRecord::Base.transaction do

 begin

 account.update!(balance: account.balance

- 100)

 log.create!(message: 'Withdrawal of

$100')

 rescue => e

 puts "Transaction failed: #{e.message}"

 raise ActiveRecord::Rollback #

Explicitly rollback

 end

end

Raising ActiveRecord::Rollback within a

transaction block will cause the transaction to be

rolled back without raising an error.

Transaction Options:

ActiveRecord::Base.transaction(isolation:

:serializable, requires_new: true) do

 # Transaction logic here

end

isolation: :serializable - Sets the transaction

isolation level to serializable, preventing certain

concurrency issues.

requires_new: true - Forces the transaction to

create a new transaction, even if one already exists.

Best Practices:

Keep transactions short and focused to minimize lock

contention.

Handle exceptions within the transaction block to

ensure proper rollback.

Use specific exception handling to avoid masking

unexpected errors.

Transactions are crucial for maintaining data integrity

in concurrent environments.

Ensure that all operations within a transaction are

logically related.

Nested Transactions

Nested transactions allow you to create transactions

within transactions, providing more granular control

over data consistency. However, ActiveRecord only

supports emulated nested transactions using

savepoints.

Emulated Nested Transactions:

ActiveRecord::Base.transaction do

 account.update!(balance: account.balance -

50)

ActiveRecord::Base.transaction(requires_new:

true) do

 log.create!(message: 'Inner transaction

log')

 end

end

When requires_new: true is used, ActiveRecord

creates a savepoint before the inner transaction and

rolls back to the savepoint if the inner transaction

fails.

Savepoints:

ActiveRecord::Base.transaction do

 account.update!(balance: account.balance -

25)

 savepoint 'before_log'

 begin

 log.create!(message: 'Savepoint log')

 rescue => e

 puts "Inner transaction failed: #

{e.message}"

 rollback_to_savepoint 'before_log'

 end

end

The savepoint method creates a savepoint, and

rollback_to_savepoint rolls back to that

savepoint if an error occurs.

Caveats:

Emulated nested transactions using savepoints have

limitations, such as not being true nested

transactions at the database level.

Not all databases support savepoints; check your

database documentation.

Best Practices:

Use nested transactions sparingly, as they can add

complexity.

Ensure proper error handling in each nested

transaction block.

Consider alternatives like smaller, independent

transactions if possible.

Nested transactions should be used carefully and

with a clear understanding of their limitations.

Savepoints can be very helpful in complex scenarios

where partial rollbacks are needed.

Always verify that your database supports savepoints

before relying on them.

Isolation Levels

Transaction isolation levels define the degree to

which transactions are isolated from each other’s

modifications. Higher isolation levels provide more

data consistency but can reduce concurrency.

Read Uncommitted:

Allows transactions to read uncommitted changes

from other transactions. This is the lowest isolation

level and can lead to dirty reads.

ActiveRecord::Base.transaction(isolation:

:read_uncommitted) do

 # Transaction logic here

end

Read Committed:

Ensures that transactions only read committed

changes from other transactions, preventing dirty

reads.

ActiveRecord::Base.transaction(isolation:

:read_committed) do

 # Transaction logic here

end

Repeatable Read:

Guarantees that if a transaction reads a row,

subsequent reads of the same row within the same

transaction will return the same value, preventing

non-repeatable reads.

ActiveRecord::Base.transaction(isolation:

:repeatable_read) do

 # Transaction logic here

end

Serializable:

The highest isolation level, ensuring that transactions

are executed as if they were executed serially,

preventing phantom reads and all other concurrency

issues.

ActiveRecord::Base.transaction(isolation:

:serializable) do

 # Transaction logic here

end

Choosing the Right Isolation Level:

The choice of isolation level depends on the

application’s requirements. Serializable provides the

highest level of data consistency but can reduce

concurrency. Read Committed is often a good

balance between consistency and concurrency.

Best Practices:

Understand the trade-offs between isolation levels

and concurrency.

Use the appropriate isolation level for each

transaction based on its specific requirements.

Avoid using Read Uncommitted in most cases due to

the risk of dirty reads.

Carefully select isolation levels to optimize for both

data integrity and application performance.

Be aware of the default isolation level of your

database system.

Page 15 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Connection Management

Proper connection management is crucial for

efficient and reliable database interactions.

ActiveRecord provides tools for managing database

connections, including connection pooling and

connection sharing.

Connection Pooling:

ActiveRecord uses connection pooling to maintain a

pool of database connections that can be reused by

different threads or processes, reducing the

overhead of establishing new connections for each

request.

Configuration in database.yml

pool: 5 # Maximum number of connections in

the pool

Connection Sharing:

In threaded environments, ActiveRecord can share

database connections between threads, further

reducing the number of connections required.

ActiveRecord::Base.connection_pool.with_conn

ection do |connection|

 # Use the connection here

end

Connection Timeout:

Set a connection timeout to prevent long-running

operations from holding connections indefinitely.

Configuration in database.yml

reaping_frequency: 10 # Check for idle

connections every 10 seconds

Connection Disconnection:

Explicitly disconnect connections when they are no

longer needed to free up resources.

ActiveRecord::Base.connection.disconnect!

Best Practices:

Configure the connection pool size based on the

application’s concurrency and database server

capacity.

Use connection sharing in threaded environments to

reduce connection overhead.

Set appropriate connection timeouts to prevent

resource exhaustion.

Monitor connection usage to identify and resolve

connection leaks.

Efficient connection management is key to

maintaining application performance and stability.

Regularly review and adjust connection pool settings

based on application load and performance metrics.

Avoid holding connections open for extended

periods to minimize resource consumption.

Idempotency

Idempotency ensures that an operation can be

applied multiple times without changing the result

beyond the initial application. This is crucial for

handling retries and ensuring data consistency in

distributed systems.

Ensuring Idempotency:

Use unique constraints to prevent duplicate records.

class CreateOrders <

ActiveRecord::Migration[7.0]

 def change

 create_table :orders do |t|

 t.string :order_id, null: false

 t.timestamps

 end

 add_index :orders, :order_id, unique:

true

 end

end

Optimistic Locking:

Use optimistic locking to prevent concurrent updates

from overwriting each other.

class Order < ApplicationRecord

 validates :order_id, uniqueness: true

end

Idempotent Operations:

Design operations to be idempotent by checking if

the operation has already been performed before

applying it.

def process_payment(payment_id)

 payment = Payment.find_by(payment_id:

payment_id)

 return if payment&.processed?

 # Process the payment here

 payment.update!(processed: true)

end

Best Practices:

Use unique constraints to prevent duplicate records.

Implement optimistic locking to handle concurrent

updates.

Design operations to be idempotent by checking

their current state before applying them.

Use a combination of techniques to ensure

idempotency in different scenarios.

Idempotency is essential for building resilient and

reliable applications.

Implement idempotent operations to handle retries

and ensure data consistency.

Combine unique constraints, optimistic locking, and

idempotent operations for comprehensive

protection.

Page 16 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Locking Mechanisms (Optimistic and Pessimistic Locking)

Optimistic Locking

Optimistic locking assumes that conflicts are rare.

It checks for modifications made by another process

before saving changes.

Uses a lock_version attribute to track updates.

If lock_version has changed, an

ActiveRecord::StaleObjectError is raised.

Rails automatically adds lock_version to your

model if you create a migration like this:

add_column :your_models, :lock_version,

:integer, default: 0

When a record is fetched, its lock_version is

stored. Before updating, Active Record verifies that

the lock_version in the database matches the

lock_version of the fetched record.

Example usage:

user = User.find(1)

user.email = 'new_email@example.com'

user.save! # Raises

ActiveRecord::StaleObjectError if

lock_version is stale

Handling ActiveRecord::StaleObjectError :

begin

 user = User.find(1)

 user.email = 'new_email@example.com'

 user.save!

rescue ActiveRecord::StaleObjectError

 # Handle the conflict, e.g., retry or

merge changes

 puts 'Record has been updated by another

user.'

end

Optimistic locking is suitable for applications where

conflicts are infrequent. It avoids holding locks for

extended periods, improving concurrency.

Pessimistic Locking

Pessimistic locking explicitly locks a database row to

prevent concurrent updates.

It’s suitable when conflicts are likely and data

integrity is critical.

Uses database-level locking mechanisms.

Rails provides the lock method to acquire a

pessimistic lock:

user = User.find(1).lock!

user.email = 'new_email@example.com'

user.save!

The lock! method adds a FOR UPDATE clause to

the SQL query, which locks the row until the

transaction is committed or rolled back.

SELECT * FROM users WHERE id = 1 LIMIT 1 FOR

UPDATE

Pessimistic locking should be used within a

transaction to ensure atomicity:

User.transaction do

 user = User.find(1).lock!

 user.email = 'new_email@example.com'

 user.save!

end

Locking specific records:

users = User.where(active: true).lock!

Considerations: Pessimistic locking can reduce

concurrency if locks are held for too long. Use it

judiciously.

Comparison

Optimistic Locking Pessimistic Locking

Assumes conflicts are

rare.

Assumes conflicts are

likely.

Uses lock_version

column.

Uses database-level

locks.

Raises

ActiveRecord::StaleOb

jectError on conflict.

Blocks other

transactions until the

lock is released.

Better concurrency in

low-conflict scenarios.

Guarantees data

integrity in high-conflict

scenarios.

Requires conflict

resolution logic.

Can lead to deadlocks if

not managed carefully.

When to use Optimistic Locking

Use optimistic locking when:

Conflicts are rare and the overhead of

pessimistic locking is not justified.

Concurrency is a priority, and you’re willing to

handle StaleObjectError exceptions.

You want to avoid holding database locks for

extended periods.

Examples:

Updating user profiles where concurrent updates

are unlikely.

Modifying infrequently accessed settings.

When to use Pessimistic Locking

Use pessimistic locking when:

Conflicts are likely and data integrity is

paramount.

You need to ensure that a series of operations

are performed atomically without interference.

You can tolerate reduced concurrency in

exchange for data consistency.

Examples:

Processing financial transactions where

concurrent updates could lead to incorrect

balances.

Managing inventory levels where precise counts

are essential.

Locking and Transactions

It’s crucial to use locking mechanisms within

transactions to ensure atomicity and consistency.

Example (Pessimistic Locking within a Transaction):

ActiveRecord::Base.transaction do

 account = Account.find(account_id, lock:

true) #Explicitly lock the record

 account.balance -= amount

 account.save!

 other_account =

Account.find(other_account_id, lock: true)

 other_account.balance += amount

 other_account.save!

end

Example (Optimistic Locking and Retries):

def update_record(record)

 begin

 record.update!(attributes)

 rescue ActiveRecord::StaleObjectError

 record.reload #Reload the record

 # Resolve conflicts or retry

 update_record(record) #Recursive call

until success or max retries

 end

end

Transactions ensure that all operations within the

block are treated as a single atomic unit. If any

operation fails, the entire transaction is rolled back,

maintaining data integrity.

Page 17 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced Active Record Migrations

Reversible Migrations

Reversible migrations allow you to define both the

up and down operations, making it easy to

rollback changes.

class CreateProducts <

ActiveRecord::Migration[7.1]

 def up

 create_table :products do |t|

 t.string :name

 t.text :description

 t.decimal :price

 t.timestamps

 end

 end

 def down

 drop_table :products

 end

end

Alternatively, use change method for reversible

migrations.

class CreateProducts <

ActiveRecord::Migration[7.1]

 def change

 create_table :products do |t|

 t.string :name

 t.text :description

 t.decimal :price

 t.timestamps

 end

 end

end

For operations that can’t be automatically reversed,

raise IrreversibleMigration .

class AddAdminFlagToUsers <

ActiveRecord::Migration[7.1]

 def up

 add_column :users, :admin, :boolean,

default: false

 end

 def down

 raise

ActiveRecord::IrreversibleMigration

 end

end

Changing Existing Tables

add_column

:table_name,

:column_name,

:column_type,

options

Adds a new column to the

table.

Example:

add_column :users,

:email, :string, null:

false, default: ''

remove_column

:table_name,

:column_name

Removes an existing column

from the table.

Example:

remove_column :users,

:email

rename_column

:table_name,

:old_column_name,

:new_column_name

Renames an existing

column.

Example:

rename_column :users,

:username, :name

change_column

:table_name,

:column_name,

:column_type,

options

Changes the data type or

options of an existing

column.

Example:

change_column

:products, :price,

:decimal, precision:

8, scale: 2

Adding and Removing Indexes

add_index

:table_name,

:column_name(s),

options

Adds an index to a column

or a set of columns.

Example:

add_index :users,

:email, unique: true

remove_index

:table_name,

:column_name(s),

options

Removes an index.

Example:

remove_index :users,

:email

add_index

:table_name, [:col1,

:col2], unique:

true

Creates a composite index

for multiple columns.

Example:

add_index :orders,

[:customer_id,

:order_date]

Using SQL Directly

Sometimes, you need to execute raw SQL queries

within migrations.

class AddSomeData <

ActiveRecord::Migration[7.1]

 def up

 execute "INSERT INTO products (name,

description, price) VALUES ('Example

Product', 'A sample product', 9.99)"

 end

 def down

 execute "DELETE FROM products WHERE name

= 'Example Product'"

 end

end

Use execute method with caution, especially when

the operation is not easily reversible. Consider using

ActiveRecord::IrreversibleMigration .

Data Migrations

Data migrations involve modifying existing data as

part of the schema change. This is often combined

with schema changes.

class UpdateProductPrices <

ActiveRecord::Migration[7.1]

 def up

 Product.all.each do |product|

 product.update_attribute(:price,

product.price * 1.1) # Increase price by 10%

 end

 end

 def down

 Product.all.each do |product|

 product.update_attribute(:price,

product.price / 1.1) # Revert price change

 end

 end

end

Ensure your data migrations are idempotent and

reversible for safety.

Consider using say_with_time helper to measure

execution time.

Page 18 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Using Transactions

Wrap your migrations in a transaction to ensure that

all changes are applied or rolled back together,

maintaining data consistency.

class ComplexMigration <

ActiveRecord::Migration[7.1]

 def change

 transaction do

 add_column :users, :temp_email,

:string

 # Some data manipulation here

 rename_column :users, :temp_email,

:email

 end

 end

end

If any part of the migration fails, the entire

transaction will be rolled back.

Page 19 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced Active Record: Executing Raw SQL Safely

Executing Raw SQL Queries

Active Record provides a way to execute raw SQL

queries when the framework’s built-in methods are

insufficient. However, it’s crucial to sanitize inputs to

prevent SQL injection vulnerabilities.

Use

ActiveRecord::Base.connection.execute(sql) to

execute raw SQL.

Example:

Warning: This example is vulnerable to SQL injection

if the name is taken from user input.

sql = "SELECT * FROM users WHERE name =

'John Doe'"

results =

ActiveRecord::Base.connection.execute(sql)

Using `sanitize_sql_array`

Alternatively, sanitize_sql_array can be used to

sanitize SQL queries.

This method constructs a SQL query with proper

escaping.

Example:

name = params[:name]

sql_array = ["SELECT * FROM users WHERE name

= ?", name]

safe_sql =

ActiveRecord::Base.sanitize_sql_array(sql_ar

ray)

results =

ActiveRecord::Base.connection.execute(safe_s

ql)

This method is especially useful when constructing

more complex queries dynamically.

SQL Injection Prevention

To prevent SQL injection, use parameterized queries.

Active Record will automatically escape and sanitize

the inputs.

Use placeholders (? for positional, or named

placeholders like :name) and pass the values as

arguments.

Using Positional Placeholders

name = params[:name]

sql = "SELECT * FROM users WHERE name = ?"

results =

ActiveRecord::Base.connection.execute(sql,

[name])

In this example, the ? placeholder is replaced by

the value of name . Active Record ensures that

name is properly escaped to prevent SQL injection.

sql = "SELECT * FROM products WHERE price >

? AND category = ?"

results =

ActiveRecord::Base.connection.execute(sql,

[min_price, category])

Multiple placeholders can be used. Ensure the order

of values in the array matches the order of

placeholders in the SQL query.

Considerations

Always sanitize user inputs when using raw SQL.

Parameterized queries are the preferred method

to prevent SQL injection.

Avoid concatenating strings directly into the

SQL query.

Review raw SQL queries carefully to ensure they

are secure.

Use named placeholders for better readability

and maintainability.

Using Named Placeholders

name = params[:name]

sql = "SELECT * FROM users WHERE name =

:name"

results =

ActiveRecord::Base.connection.execute(sql, {

name: name })

Here, :name is a named placeholder that is replaced

by the value associated with the name key in the

hash.

sql = "SELECT * FROM products WHERE price >

:min_price AND category = :category"

results =

ActiveRecord::Base.connection.execute(sql, {

min_price: min_price, category: category })

Named placeholders improve readability, especially

with multiple parameters. The order in the hash does

not matter.

Page 20 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Single Table Inheritance (STI) and Polymorphic Associations

Single Table Inheritance (STI) Basics

Single Table Inheritance (STI) allows you to store

multiple subclasses of a model in a single database

table.

Key Concepts:

A single table stores all subclasses.

A type column distinguishes between

subclasses.

Defining STI:

Create a base class and subclasses that inherit from

it. Add a type column to the database table for the

base class.

class Payment < ApplicationRecord

end

class CreditCardPayment < Payment

end

class BankTransferPayment < Payment

end

Migration:

The migration should create the payments table

with a type column (string).

class CreatePayments <

ActiveRecord::Migration[7.1]

 def change

 create_table :payments do |t|

 t.string :type

 t.decimal :amount

 t.timestamps

 end

 end

end

Creating Records:

When creating records, the type column is

automatically set.

credit_card_payment =

CreditCardPayment.create(amount: 50.00)

bank_transfer_payment =

BankTransferPayment.create(amount: 100.00)

CreditCardPayment.all # => Returns only

CreditCardPayment instances

Payment.all # => Returns all Payment

instances (including subclasses)

Querying:

You can query based on the type column.

Payment.where(type: 'CreditCardPayment') #

=> Returns CreditCardPayment instances

STI Gotchas and Considerations

Null type values:

If a record has a null type , it will be instantiated as

the base class.

Table bloat:

All attributes for all subclasses are in one table, which

can lead to many null columns and larger table sizes if

the subclasses have very different fields.

Database indexes:

Add indexes to columns frequently used in queries to

improve performance.

class AddIndexToPayments <

ActiveRecord::Migration[7.1]

 def change

 add_index :payments, :type

 end

end

When to avoid STI:

Avoid STI if subclasses have significantly different

attributes, as this can lead to a sparse table with

many null values. Consider using separate tables with

a shared interface or polymorphic associations

instead.

Testing STI:

Ensure that you thoroughly test each subclass to

verify that they behave as expected within the STI

structure.

Potential performance issues:

Can occur when the table grows very large, especially

if there are many columns and subclasses. Monitor

query performance and consider denormalization

strategies if needed.

Page 21 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Polymorphic Associations Basics

Polymorphic associations allow a model to belong to

different types of other models using a single

association.

Key Concepts:

A single association can connect to multiple

models.

Uses *_id and *_type columns in the

database.

Defining Polymorphic Associations:

Add a polymorphic association to the model that will

belong to different types of models.

class Comment < ApplicationRecord

 belongs_to :commentable, polymorphic: true

end

class Article < ApplicationRecord

 has_many :comments, as: :commentable

end

class Event < ApplicationRecord

 has_many :comments, as: :commentable

end

Migration:

The migration should create the comments table

with commentable_id (integer) and

commentable_type (string) columns.

class CreateComments <

ActiveRecord::Migration[7.1]

 def change

 create_table :comments do |t|

 t.text :body

 t.references :commentable,

polymorphic: true, index: true

 t.timestamps

 end

 end

end

Creating Records:

When creating records, both *_id and *_type

columns are set.

article = Article.create(title: 'Polymorphic

Associations')

event = Event.create(name: 'Tech

Conference')

comment_for_article =

article.comments.create(body: 'Great

article!')

comment_for_event =

event.comments.create(body: 'Excited to

attend!')

Accessing Associations:

You can access the associated object through the

polymorphic association.

comment_for_article.commentable # => Returns

the Article instance

comment_for_event.commentable # => Returns

the Event instance

Polymorphic Associations Querying and Usage

Querying:

You can query based on the *_type and *_id

columns.

Comment.where(commentable_type: 'Article',

commentable_id: article.id)

Comment.where(commentable: article)

Eager Loading:

Use eager loading to avoid N+1 queries when

accessing polymorphic associations.

articles = Article.includes(:comments)

articles.each { |article|

article.comments.each { |comment|

comment.body } }

Benefits:

Flexibility in associating models.

Reduced code duplication.

Simplified data model for certain relationships.

Considerations:

Can complicate queries if not properly indexed.

Requires careful planning to ensure data

integrity.

Inverse Associations:

If you need to update the commentable association

from the Comment model, you can use the

inverse_of option.

class Comment < ApplicationRecord

 belongs_to :commentable, polymorphic:

true, inverse_of: :comments

end

Advanced Polymorphic Association Techniques

Customizing *_type values:

You can customize the values stored in the *_type

column using a before_validation callback.

class Image < ApplicationRecord

 belongs_to :imageable, polymorphic: true

 before_validation :set_imageable_type

 private

 def set_imageable_type

 self.imageable_type =

imageable.class.name

 end

end

Validations:

Add validations to ensure that the associated object

exists and is of the correct type.

class Comment < ApplicationRecord

 belongs_to :commentable, polymorphic: true

 validates :commentable, presence: true

end

Scopes:

Define scopes to easily query comments for specific

commentable types.

class Comment < ApplicationRecord

 belongs_to :commentable, polymorphic: true

 scope :for_articles, -> {

where(commentable_type: 'Article') }

end

Comment.for_articles # => Returns comments

for articles

Polymorphic Joins:

When querying across multiple tables, use

polymorphic joins to efficiently retrieve associated

records.

Testing Polymorphic Associations:

Ensure comprehensive testing of polymorphic

associations, covering different associated models

and edge cases.

STI with Polymorphism:

You can combine STI and polymorphic associations,

for example, having different types of comments

(STI) associated with different models

(polymorphism).

Page 22 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Query Optimization and Performance Tuning Techniques

Eager Loading (N+1 Problem)

The N+1 query problem occurs when Active Record

executes one query to fetch a collection of records,

and then performs additional queries for each record

in the collection to fetch associated data.

Example (without eager loading):

@posts = Post.all

@posts.each do |post|

 puts post.user.name # Triggers N+1

queries

end

Solution: Eager Loading with includes

includes uses LEFT OUTER JOIN or separate

queries to load associations, optimizing the query

count.

@posts = Post.includes(:user).all

@posts.each do |post|

 puts post.user.name # No additional

queries

end

Eager Loading with Multiple Associations

@posts = Post.includes(:user, :comments).all

Nested Eager Loading

@posts = Post.includes(user: :profile).all

Conditional Eager Loading

@posts = Post.includes(:user).where(users: {

active: true })

preload vs eager_load vs includes

includes : Chooses the most efficient loading

strategy (usually LEFT OUTER JOIN or separate

queries).

preload : Loads associations in separate

queries.

eager_load : Forces the use of a LEFT OUTER

JOIN.

Using `pluck` and `select`

pluck is used to retrieve specific columns directly

from the database as an array, avoiding the

instantiation of Active Record objects.

Example:

User.pluck(:id, :email) # => [[1,

'user1@example.com'], [2,

'user2@example.com']]

select is used to specify which columns to

retrieve, useful for reducing the amount of data

transferred from the database.

Example:

User.select(:id, :email) # Returns Active

Record objects with only id and email

attributes

When to use pluck vs select

Use pluck when you only need specific

column values and don’t need Active Record

object functionality.

Use select when you need Active Record

objects but want to limit the columns retrieved.

Chaining with pluck and select

User.where(active: true).pluck(:email) # =>

['user1@example.com', 'user2@example.com']

Using distinct with pluck

User.pluck(:email).uniq # =>

['user1@example.com', 'user2@example.com']

Post.distinct.pluck(:category) # => ['news',

'tutorial']

Batch Processing

Batch processing is essential for handling large

datasets efficiently, avoiding memory issues and

improving performance.

find_each

Iterates over a large number of records in batches,

loading each batch into memory.

User.find_each(batch_size: 1000) do |user|

 # Process each user

end

find_in_batches

Similar to find_each , but yields an array of records

for each batch.

User.find_in_batches(batch_size: 1000) do

|users|

 # Process each batch of users

 users.each { |user| ... }

end

in_batches

Returns an Enumerable that can be chained with

other methods.

User.where(active: true).in_batches(of:

500).each_record do |user|

 # Process each user

end

Updating in Batches

User.find_in_batches(batch_size: 1000) do

|users|

 User.transaction do

 users.each { |user| user.update(status:

'processed') }

 end

end

Important Considerations

Always use transactions when performing batch

updates to ensure data consistency.

Adjust batch_size based on available memory

and processing capacity.

Page 23 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Optimistic and Pessimistic Locking

Optimistic Locking

Assumes that multiple users are unlikely to edit the

same record simultaneously. Uses a lock_version

column to detect conflicting updates.

Add lock_version column to table

Usage

rails generate migration

AddLockVersionToPosts lock_version:integer

post = Post.find(1)

post.update(title: 'New Title') # Raises

ActiveRecord::StaleObjectError if

lock_version has changed

Pessimistic Locking

Locks a record for exclusive access until the

transaction is complete, preventing other users from

modifying it.

Usage

Post.transaction do

 post = Post.lock.find(1)

 post.update(title: 'New Title')

end

When to use Optimistic vs Pessimistic Locking

Use Optimistic Locking when conflicts are rare

and you want to minimize database locking

overhead.

Use Pessimistic Locking when conflicts are

frequent and data integrity is critical.

Customizing Pessimistic Locking

Post.transaction do

 post = Post.lock('FOR UPDATE

NOWAIT').find(1)

 post.update(title: 'New Title')

end

Handling StaleObjectError

begin

 post = Post.find(1)

 post.update(title: 'New Title')

rescue ActiveRecord::StaleObjectError

 # Handle conflict (e.g., reload record and

retry)

end

Using Counter Caches

Counter caches store the number of associated

records directly in the parent table, avoiding the need

to query the associated table for the count.

Example:

Add a comments_count column to the posts

table.

rails generate migration

AddCommentsCountToPosts

comments_count:integer

Update the belongs_to association

class Comment < ApplicationRecord

 belongs_to :post, counter_cache: true

end

Accessing the counter cache

post = Post.find(1)

puts post.comments_count # No additional

query needed

Resetting the counter cache

If you add the counter cache to an existing

application, you’ll need to initialize the counter.

Post.find_each do |post|

 Post.reset_counters(post.id, :comments)

end

Custom Counter Cache Column

class Comment < ApplicationRecord

 belongs_to :post, counter_cache:

:approved_comments_count

end

Page 24 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced Active Record: Lazy Loading, Caching, and Memoization

Lazy Loading (N+1 Problem)

Lazy loading is the default behavior in Active Record

where associated data is only loaded when it’s

accessed. This can lead to the N+1 problem.

Explanation: When you iterate through a collection of

records and access an associated record for each,

Active Record might execute one query to fetch the

initial records (1 query) and then one query for each

associated record (N queries).

Example (N+1 Problem):

users = User.all

users.each do |user|

 puts user.posts.count # Triggers a new

query for each user

end

Consequences: This results in many database

queries, significantly slowing down the application.

Eager Loading (Solution to N+1)

Eager loading is a technique to load associated

records in a single query, mitigating the N+1 problem.

Methods:

includes

preload

eager_load

Using includes :

includes is smart and will use LEFT OUTER JOIN

or separate queries based on the situation.

users = User.includes(:posts).all

users.each do |user|

 puts user.posts.count # No additional

queries

end

Using preload :

preload always uses separate queries.

users = User.preload(:posts).all

users.each do |user|

 puts user.posts.count # No additional

queries

end

Using eager_load :

eager_load forces a LEFT OUTER JOIN .

users = User.eager_load(:posts).all

users.each do |user|

 puts user.posts.count # No additional

queries

end

Caching

Fragment Caching:

Cache portions of a view.

<% cache @user do %>

 <%= render @user %>

<% end %>

Action Caching:

Cache the entire result of an action. Less common

now.

class ProductsController <

ApplicationController

 caches_action :index, expires_in: 1.hour

end

Low-Level Caching:

Directly interact with the cache store.

Rails.cache.fetch("user-#{user.id}",

expires_in: 12.hours) do

 user.posts.to_a

end

Cache Stores:

memory_store (Not for production)

file_store (Good for single server)

mem_cache_store (Popular, requires

memcached)

redis_cache_store (Requires Redis)

Memoization

Definition:

Memoization is a technique to store the result of an

expensive function call and return the cached result

when the same inputs occur again.

Implementation:

def expensive_operation

 @expensive_operation ||= begin

 # Perform expensive calculation here

 result = some_expensive_calculation

 result

 end

end

Usage with Associations:

class User < ApplicationRecord

 def visible_posts

 @visible_posts ||= posts.where(visible:

true).to_a

 end

end

Benefits:

Reduces redundant calculations and database

queries, improving performance.

Caveats:

Be careful with mutable objects. The cached value

might become outdated if the object is modified.

Counter Caching

Counter caching is a feature where a column is added

to a parent model to cache the count of associated

records, reducing the need to query the associated

table for a count every time.

How it Works: Active Record automatically

increments or decrements the counter cache column

when associated records are created or destroyed.

Example:

Assume a User has many posts . Add a

posts_count column to the users table.

class AddPostsCountToUsers <

ActiveRecord::Migration[6.0]

 def change

 add_column :users, :posts_count,

:integer, default: 0

 end

end

Configuration in Model:

class Post < ApplicationRecord

 belongs_to :user, counter_cache: true

end

Accessing the Count:

user = User.find(1)

puts user.posts_count # Access the cached

count

Benefits: Greatly reduces the number of queries

when displaying counts of associated records.

Note:

For existing data, you may need to manually update

the counter cache:

User.find_each { |user|

User.reset_counters(user.id, :posts) }

Page 25 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced Active Record: Error Handling, Debugging, and Logging

Validation Errors

Active Record provides built-in validation features to

ensure data integrity. When validations fail, the

errors object is populated.

object.valid? - Runs validations and returns true

if no errors are found, false otherwise.

object.errors - Returns an

ActiveModel::Errors object containing all

validation errors.

object.errors.full_messages - Returns an array

of human-readable error messages.

object.errors[:attribute] - Returns an array of

errors for a specific attribute.

Example:

user = User.new(name: nil, email:

'invalid_email')

user.valid? # => false

user.errors.full_messages # => ["Name can't

be blank", "Email is invalid"]

user.errors[:name] # => ["can't be blank"]

To display validation errors in a Rails view:

<% if @user.errors.any? %>

 <div id="error_explanation">

 <h2><%= pluralize(@user.errors.count,

"error") %> prohibited this user from being

saved:</h2>

 <% @user.errors.full_messages.each do

|message| %>

 <%= message %>

 <% end %>

 </div>

<% end %>

Debugging with Rails Logger

Rails provides a built-in logger to output debugging

information. You can access it via Rails.logger .

Rails.logger.debug("message") - Logs a debug

message.

Rails.logger.info("message") - Logs an

informational message.

Rails.logger.warn("message") - Logs a warning

message.

Rails.logger.error("message") - Logs an error

message.

Rails.logger.fatal("message") - Logs a fatal

error message.

Example:

Rails.logger.debug("Processing the

request...")

user = User.find_by(id: params[:id])

if user.nil?

 Rails.logger.warn("User not found with id:

#{params[:id]}")

else

 Rails.logger.info("User found: #

{user.name}")

end

Query Debugging

Debugging Active Record queries is crucial for

optimizing performance and identifying issues.

ActiveRecord::Base.logger - Configures the

logger for Active Record queries. By default it uses

Rails logger.

Enable logging in config/database.yml by setting

logger: logger: <%= Logger.new(STDOUT) %> .

puts queries in console:

ActiveRecord::Base.logger =

Logger.new(STDOUT) in rails console.

Use explain to analyze query performance:

user = User.find(1)

puts user.posts.where(published:

true).explain

The explain output shows how the database

executes the query, helping you identify potential

bottlenecks (e.g., missing indexes).

Transaction Handling and Error Rollback

Active Record transactions ensure data consistency

by grouping multiple operations into a single atomic

unit. If any operation fails, the entire transaction is

rolled back.

ActiveRecord::Base.transaction do ... end -

Wraps a block of code in a transaction.

Example:

ActiveRecord::Base.transaction do

 account.update!(balance: account.balance -

100)

 order.update!(status: 'paid')

end

If any exception is raised within the transaction block

(e.g., due to a validation failure), the transaction is

automatically rolled back.

You can manually trigger a rollback using raise

ActiveRecord::Rollback .

Example of manual rollback:

ActiveRecord::Base.transaction do

 account.update!(balance: account.balance -

100)

 if order.total > 1000

 raise ActiveRecord::Rollback, "Order

total exceeds limit"

 end

 order.update!(status: 'paid')

end

Page 26 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Modularizing Code with Concerns and Service Objects

Concerns: Introduction

Concerns are modules that encapsulate reusable

code, promoting the DRY (Don’t Repeat Yourself)

principle.

They help organize large models by extracting

specific functionalities into separate files.

Concerns are typically placed in the

app/models/concerns directory.

To include a concern in a model, use the include

keyword:

class ModelName < ApplicationRecord

 include ConcernName

end

When naming concern files, use snake_case (e.g.,

searchable.rb).

The corresponding module name should be in

CamelCase (e.g., Searchable).

Concerns can define methods, scopes, validations,

and callbacks that become part of the including

model.

Example:

app/models/concerns/searchable.rb

module Searchable

 extend ActiveSupport::Concern

 included do

 scope :search, -> (query) { where('name

LIKE ?', "%#{query}%") }

 end

end

app/models/product.rb

class Product < ApplicationRecord

 include Searchable

end

Product.search('example') # => Returns

products matching the search query

Concerns: Best Practices

Ensure concerns have a single, well-defined

responsibility to maintain clarity and reusability.

Use the included block to inject code into the

model class when the concern is included.

This is where you define scopes, validations, and

callbacks that should be added to the model.

module Commentable

 extend ActiveSupport::Concern

 included do

 has_many :comments, as: :commentable

 end

end

Avoid concerns that are too specific to a single

model. Aim for generic, reusable functionality.

Test concerns independently to ensure they function

correctly before including them in models.

Use class_methods block to define class-level

methods in concerns.

module Votable

 extend ActiveSupport::Concern

 class_methods do

 def popular

 where('votes > 10')

 end

 end

end

Service Objects: Introduction

Service objects encapsulate complex business logic

that doesn’t naturally belong in models, controllers, or

views.

They promote separation of concerns and improve

code testability and maintainability.

Service objects are plain Ruby objects (POROs) that

typically perform a single, well-defined operation.

Service objects are often placed in the

app/services directory, but this is just a

convention.

A typical service object has a public method (often

called call) that executes the business logic.

Example:

app/services/create_user.rb

class CreateUser

 def initialize(params)

 @params = params

 end

 def call

 User.create!(@params)

 rescue ActiveRecord::RecordInvalid => e

 OpenStruct.new(success?: false, error:

e.message)

 else

 OpenStruct.new(success?: true, user:

user)

 end

end

Usage in controller

result = CreateUser.new(params).call

if result.success?

 # Handle success

else

 # Handle failure

end

Service Objects: Benefits

Improved code organization: Service objects keep

controllers and models lean by extracting complex

logic.

Increased testability: Service objects are easier to

test in isolation compared to controller actions or

model methods.

Enhanced reusability: Service objects can be reused

across multiple controllers or even different parts of

the application.

Reduced complexity: Breaking down complex

operations into smaller service objects makes the

code more readable and maintainable.

Clear separation of concerns: Service objects

enforce a clear separation between the presentation

layer (controllers) and the business logic.

Transaction Management: Service objects are

excellent places to wrap operations in database

transactions to ensure data consistency.

Page 27 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Service Objects: Best Practices

Each service object should perform a single, well-

defined operation. Avoid creating large, monolithic

service objects.

Keep service objects stateless whenever possible.

Pass all necessary data as arguments to the call

method.

Use meaningful names for service objects that clearly

indicate their purpose (e.g., CreateUser ,

SendEmail , ProcessPayment).

Handle exceptions and errors gracefully within the

service object. Return a consistent response format

(e.g., using OpenStruct) to indicate success or

failure.

Consider using dependency injection to pass

dependencies (e.g., other service objects,

repositories) into the service object.

Test service objects thoroughly with unit tests to

ensure they function correctly under various

conditions.

Page 28 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Custom Attribute Types and Serialization Strategies

Custom Attribute Types

Active Record allows you to define custom attribute

types to handle specific data formats or validation

logic. This can simplify your models and encapsulate

complex behavior.

Define a custom type by creating a class that inherits

from ActiveRecord::Type::Value or

ActiveRecord::Type::Serialized .

The cast method transforms raw input (from the

database or user) into the appropriate Ruby object.

The serialize method converts the Ruby object

back into a database-friendly value.

Example: A custom type for handling encrypted

strings.

class EncryptedString <

ActiveRecord::Type::Value

 def cast(value)

 return nil if value.nil?

 # Assuming you have an

encryption/decryption mechanism

 decrypt(value)

 end

 def serialize(value)

 return nil if value.nil?

 encrypt(value)

 end

 private

 def encrypt(value)

 # Encryption logic here

 "encrypted_#{value}"

 end

 def decrypt(value)

 # Decryption logic here

 value.gsub("encrypted_", "")

 end

end

Register the custom type:

ActiveRecord::Type.register(:encrypted_strin

g, EncryptedString)

Use the custom type in your model:

class User < ApplicationRecord

 attribute :secret, :encrypted_string

end

Serialization Strategies

Serialization is the process of converting Ruby

objects into a format that can be stored in the

database (e.g., JSON, YAML). Active Record provides

built-in serialization capabilities.

The serialize method in Active Record allows you

to store complex Ruby objects (e.g., arrays, hashes) in

a single database column. The column type should be

text or string .

Example: Serializing a hash to YAML:

class Preferences < ApplicationRecord

 serialize :settings, Hash

end

You can specify a different coder (e.g., JSON) if

needed:

class Preferences < ApplicationRecord

 serialize :settings, JSON

end

When the settings attribute is accessed, Active

Record automatically deserializes the YAML or JSON

data into a Ruby hash. When the settings attribute

is modified, Active Record serializes the hash back

into YAML or JSON before saving it to the database.

Use serialization for simple data structures. For more

complex or frequently queried data, consider using

separate columns or a dedicated data store.

Overwriting Accessors

You can overwrite the default getter and setter

methods (accessors) for Active Record attributes to

add custom behavior.

This allows you to perform actions before or after

getting or setting the attribute value (e.g., formatting,

validation, logging).

Example: Custom getter and setter for a name

attribute:

class User < ApplicationRecord

 def name

 # Custom getter logic

 read_attribute(:name).upcase

 end

 def name=(new_name)

 # Custom setter logic

 write_attribute(:name, new_name.strip)

 end

end

read_attribute(:attribute_name) is used to read

the raw value from the database.

write_attribute(:attribute_name, value) is

used to set the value to be saved to the database.

By overwriting the accessors, you change the

attribute behavior, so use it with caution and make

sure it aligns with model logic.

Attribute API

Active Record provides a powerful Attribute API that

allows you to define attributes on your models

without corresponding database columns. These are

often referred to as virtual attributes.

The attribute method allows you to define these

attributes, along with their type. This enables type

casting and other attribute-related features.

Example: Defining a virtual attribute full_name :

class User < ApplicationRecord

 attribute :full_name, :string

 def full_name

 "#{first_name} #{last_name}"

 end

 def full_name=(name)

 parts = name.split(' ')

 self.first_name = parts.first

 self.last_name = parts.last

 end

end

The attribute method also accepts a default

value:

class Product < ApplicationRecord

 attribute :available, :boolean, default:

true

end

Virtual attributes are useful for form handling,

calculations, and other data manipulations that don’t

require database storage.

Dirty Tracking

Active Record provides dirty tracking, which allows

you to track changes made to an object’s attributes.

This is useful for auditing, conditional updates, and

other change-related logic.

The changed? method returns true if any

attribute has been changed since the object was last

loaded or saved.

The changes method returns a hash of changed

attributes, with the original and new values:

user = User.find(1)

user.name = 'New Name'

user.changes # => { 'name' => ['Old Name',

'New Name'] }

You can check if a specific attribute has changed

using attribute_changed? :

user.name_changed? # => true

You can access the previous value of an attribute

using attribute_was :

user.name_was # => 'Old Name'

Dirty tracking helps you optimize updates by only

saving changed attributes, triggering callbacks only

when relevant attributes change, and providing an

audit trail of changes.

Page 29 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Multi-Database and Replica Support

Connecting to Multiple Databases

Rails 6.0 and later versions provide built-in support

for connecting to multiple databases. This feature is

useful for sharding, read replicas, and separating data

concerns.

Define database connections in your

config/database.yml file.

Example config/database.yml setup:

default: &default

 adapter: postgresql

 encoding: unicode

 pool: <%= ENV.fetch("RAILS_MAX_THREADS") {

5 } %>

 username: your_username

 password: your_password

development:

 <<: *default

 database: your_app_development

primary:

 <<: *default

 database: your_app_primary_development

secondary:

 <<: *default

 database: your_app_secondary_development

Specify which models should use which database

connection by using the connects_to method in

your model.

class ApplicationRecord < ActiveRecord::Base

 self.abstract_class = true

end

class User < ApplicationRecord

 connects_to database: { writing: :primary,

reading: :primary }

end

class AuditLog < ApplicationRecord

 connects_to database: { writing:

:secondary, reading: :secondary }

end

Write/Read from Specific DB

connects_to database: { writing: :primary,

reading: :primary }

Specifies that both writing and reading operations

should use the primary database connection.

connects_to database: { writing: :primary,

reading: :secondary }

Specifies that writing operations should use the

primary database, while reading operations should

use the secondary database. Useful for read

replicas.

Using connected_to block

You can use connected_to to execute code blocks

within a specific database connection.

User.connected_to(database: :primary) do

 User.create(name: 'Primary User')

end

User.connected_to(database: :secondary) do

 # Perform read operations on the secondary

database

 users = User.all

end

Configuring Read Replicas

To configure read replicas, define multiple database

connections in database.yml , one for the primary

and one or more for the replicas.

primary:

 <<: *default

 database: your_app_primary_development

replica1:

 <<: *default

 database: your_app_replica1_development

 host: replica1.example.com

replica2:

 <<: *default

 database: your_app_replica2_development

 host: replica2.example.com

Specify the writing and reading connections in your

model:

class User < ApplicationRecord

 connects_to database: { writing: :primary,

reading: :replica1 }

end

Rails will automatically route read queries to the

replica database and write queries to the primary

database.

Switching Connections Dynamically

connected_to with shard:

You can dynamically switch connections using the

connected_to method with the shard option to

target different databases at runtime.

User.connected_to(shard: :primary) do

 # Operations on the primary database

end

User.connected_to(shard: :secondary) do

 # Operations on the secondary database

end

Using a block with writing: and reading:

Specify writing and reading connections within the

block.

User.connected_to(database: { writing:

:primary, reading: :replica1 }) do

 # Operations using primary for writing and

replica1 for reading

end

Considerations and Best Practices

Ensure your database schema is consistent across all

databases involved in multi-database setups.

Use database migrations to manage schema changes

across all databases.

Monitor replication lag when using read replicas to

ensure data consistency.

Handle connection errors and failover scenarios

gracefully.

Test your multi-database configurations thoroughly

to prevent data corruption or inconsistencies.

Page 30 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced Active Record Testing

Unit Testing Models

Focus on testing model logic in isolation, without

involving the database directly as much as possible.

Use Mocks & Stubs: Replace database

interactions with mocks or stubs to control

return values and avoid slow, unpredictable

database access.

Testing Validations: Ensure your validations work

as expected by testing valid and invalid attribute

combinations.

Testing Callbacks: Verify that callbacks are

triggered and perform their intended actions.

Example using rspec-mocks :

describe User do

 describe '#valid?' do

 it 'is invalid with a short password' do

 user = User.new(password: 'short')

 expect(user.valid?).to be_falsey

 end

 it 'is valid with a long password' do

 user = User.new(password:

'long_enough')

 expect(user.valid?).to be_truthy

 end

 end

end

Testing Associations

Verifying association behavior, such as ensuring

correct data retrieval through associations.

Use factories to create associated records and test

the relationships.

describe User do

 it 'has many articles' do

 user = create(:user_with_articles)

 expect(user.articles.count).to be > 0

 end

end

Testing dependent options (:destroy , :nullify ,

:restrict_with_error ,

:restrict_with_exception).

Ensure that dependent records are handled correctly

when the parent record is destroyed.

describe 'dependent destroy' do

 it 'destroys associated articles' do

 user = create(:user_with_articles)

 expect { user.destroy }.to change {

Article.count }.by(-3)

 end

end

Integration Testing

Involves testing the interaction between different

parts of the application, including models and the

database.

Database State Verification: Ensure that

database records are created, updated, and

deleted correctly.

Transaction Testing: Confirm that transactions

are handled properly, especially in complex

operations.

Testing Complex Queries: Validate that complex

Active Record queries return the expected

results.

Example of an integration test:

describe 'User creates article' do

 it 'creates a new article in the database'

do

 user = create(:user)

 expect {

 user.articles.create(title: 'New

Article', content: 'Content')

 }.to change { Article.count }.by(1)

 end

end

System Tests

Simulate user interactions to test features end-to-

end.

Using Capybara to simulate user actions and verify

the results.

describe 'Create article' do

 it 'allows a user to create a new article'

do

 sign_in_as(create(:user))

 visit '/articles/new'

 fill_in 'Title', with: 'My Article'

 fill_in 'Content', with: 'Article

Content'

 click_button 'Create Article'

 expect(page).to have_content('Article

was successfully created.')

 end

end

Focus on critical paths and user workflows.

Write tests that cover the most important user

scenarios to ensure core functionality.

Testing Database Interactions

Strategies for testing direct database interactions,

including complex queries and data migrations.

Query Object Testing: Test query objects in

isolation to ensure they generate the correct

SQL queries.

Data Migration Testing: Verify that data

migrations correctly transform data.

Raw SQL Queries: Ensure raw SQL queries are

tested for correctness and security (e.g.,

preventing SQL injection).

Example:

describe 'SqlQuery' do

 it 'returns correct result' do

 result =

ActiveRecord::Base.connection.exec_query("SE

LECT * FROM users WHERE name = 'test'")

 expect(result.count).to eq(1)

 end

end

Performance Testing

Measuring and improving the performance of Active

Record queries and database operations.

Use tools like benchmark to measure the execution

time of critical queries.

require 'benchmark'

n = 100

Benchmark.bm do |x|

 x.report { n.times { User.where(name:

'test').first } }

end

Identifying and optimizing slow queries.

Use Bullet gem to detect N+1 queries and other

performance issues.

Page 31 of 31 https://cheatsheetshero.com

https://cheatsheetshero.com/

