
Hotwire Cheatsheet for Ruby on Rails Developers
This cheatsheet provides a comprehensive quick reference to Hotwire's core components in Ruby on Rails, including Turbo, Stimulus, and their integration

for building fast, dynamic web applications. It covers essential setup steps, code examples, debugging techniques, and best practices to streamline

development and improve performance.

Hotwire for Ruby on Rails Developers

Introduction to Hotwire

Hotwire, which stands for HTML Over-The-Wire,

is an alternative approach to building modern

web applications without using much JavaScript

by sending HTML instead of JSON over the wire.

It’s designed to work seamlessly with Rails,

providing a way to create rich, dynamic user

interfaces with significantly less client-side

JavaScript.

Hotwire is composed of Turbo and Stimulus.

Turbo handles server-rendered HTML updates

and Stimulus provides a lightweight JavaScript

framework for enhancing the HTML.

Hotwire Architecture

The core idea is to leverage server-side rendering

for most of the application logic and use HTML

updates to change parts of the page. Here’s a

simplified diagram:

[Browser] <--> [Rails Server]

 HTML HTML

1. User Interaction: The user interacts with the

web page (e.g., clicks a button, submits a

form).

2. Request to Server: The browser sends an

HTTP request to the Rails server.

3. Server Processing: The Rails server

processes the request and renders HTML.

4. HTML Response: Instead of JSON, the server

sends back HTML fragments.

5. Turbo Updates: Turbo intercepts the HTML

response and intelligently updates the DOM,

replacing only the necessary parts of the

page.

Benefits of Hotwire

Reduced JavaScript: Dramatically reduces

the amount of JavaScript needed, simplifying

the front-end.

Faster Initial Load: Server-rendered HTML

leads to faster initial page loads and better

SEO.

Improved Performance: Sending smaller

HTML fragments instead of large JSON

payloads improves performance.

Enhanced Productivity: Easier to develop

and maintain applications with less

complexity.

Turbo Drive

Turbo Drive automatically speeds up links and

form submissions by intercepting them and

making them into fetch requests. It then

replaces the <body> tag with the response.

To disable Turbo Drive on a specific link:

To disable Turbo Drive entirely:

<a href="/path/to/page" data-

turbo="false">Link

<meta name="turbo-visit-control"

content="reload">

It also maintains a persistent history and provides

advanced visit control.

Example of using Turbo Drive to navigate:

<%= link_to "Go to Home", root_path %>

Turbo Frames

Turbo Frames allow you to divide a page into

independent sections that can be updated

individually.

A Turbo Frame looks like this:

<turbo-frame id="my_frame">

 Content to be updated

</turbo-frame>

When a frame’s content changes, only that frame

is updated, not the entire page. This reduces

bandwidth and makes for a snappier user

experience.

Example of updating a Turbo Frame:

Controller

def update

 @item = Item.find(params[:id])

 @item.update(item_params)

 render turbo_stream:

turbo_stream.replace("item_#{@item.id}",

partial: 'item', locals: { item: @item

})

end

Turbo Streams

Turbo Streams deliver page changes as

fragments of HTML to be appended, prepended,

replaced, updated, or removed.

Example:

render turbo_stream:

turbo_stream.append("comments", partial:

"comments/comment", locals: { comment:

@comment })

These streams are sent over WebSocket

connections, or after form submissions and link

clicks.

Another example:

render turbo_stream:

turbo_stream.remove("comment_123")

Stimulus.js

Stimulus is a modest JavaScript framework for

augmenting your HTML. It doesn’t take over the

entire page; instead, it’s designed to work well

with server-rendered HTML.

A Stimulus controller looks like this:

//

app/javascript/controllers/hello_control

ler.js

import { Controller } from

"@hotwired/stimulus"

export default class extends Controller

{

 static targets = ["name", "output"]

 greet() {

 this.outputTarget.textContent =

`Hello, ${this.nameTarget.value}!`

 }

}

It connects JavaScript objects to elements in

your HTML using data attributes.

And the corresponding HTML:

<div data-controller="hello">

 <input data-hello-target="name"

type="text">

 <button data-action="click-

>hello#greet">Greet</button>

</div>

Page 1 of 30 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/igor-kasyanchuk/930-hotwire-cheatsheet-for-ruby-on-rails-developers
http://cheatsheetshero.com/user/igor-kasyanchuk/930-hotwire-cheatsheet-for-ruby-on-rails-developers
http://cheatsheetshero.com/user/igor-kasyanchuk/930-hotwire-cheatsheet-for-ruby-on-rails-developers
https://cheatsheetshero.com/

Turbo Overview

Rails Integration

Rails provides excellent support for Hotwire

through the turbo-rails gem. This gem adds

helpers for generating Turbo Frames, Streams,

and more.

Ensure that you include turbo-rails in your

Gemfile and run bundle install to get started.

You can generate a new Rails application with

Hotwire pre-configured using the --turbo flag:

rails new myapp --turbo

Practical Examples

Consider a simple to-do list application. With

Hotwire, adding a new to-do item involves

submitting a form, the server renders the new

item as HTML, and Turbo Streams append it to

the list without a full page reload.

This is much simpler than implementing the same

functionality with a traditional JavaScript

framework, which would require writing API

endpoints, handling JSON responses, and

manually updating the DOM.

Another common use case is real-time updates.

For example, a chat application can use Turbo

Streams over WebSockets to push new messages

to all connected clients in real time. The server

renders the message as HTML, and Turbo

Streams ensure it’s instantly displayed in the chat

window.

Hotwire Resources

Hotwire Official Website - Official

documentation and guides for Hotwire.

Turbo Handbook - Comprehensive guide to

Turbo.

Stimulus Handbook - Comprehensive guide to

Stimulus.

Hotwire Source Code (GitHub) - Source code for

Turbo and Stimulus.

GoRails Hotwire Tutorials - A collection of

Hotwire tutorials on GoRails.

Drifting Ruby Hotwire Episodes - Hotwire

tutorials and screencasts.

Hotwire Newsletter - Stay updated with the

latest news and updates from the Hotwire

community.

Stimulus Components - A curated collection of

reusable Stimulus components.

Masilotti.com Newsletter - Insights and articles

on modern web development, including Hotwire.

Turbo Fundamentals

Turbo is a suite of techniques for building modern

web applications by sending HTML over the wire.

It enhances Rails apps by providing a way to

update parts of a page without full page reloads,

resulting in faster and more responsive user

experiences.

Turbo consists of:

Turbo Drive: Automatically makes links and

forms faster using AJAX.

Turbo Frames: Decompose complex pages

into independent components.

Turbo Streams: Deliver page changes over

WebSocket, SSE, or as a result of form

submissions.

Turbo Drive

Turbo Drive intercepts all clicks on <a> tags and

form submissions. It issues AJAX requests,

expects HTML in response, and replaces the

<body> of the current page with the <body>

of the response.

This makes navigation feel instantaneous.

How it works:

1. You click a link.

2. Turbo Drive prevents the browser from

following the link.

3. Turbo Drive issues an AJAX request for the

page.

4. When the AJAX request completes, Turbo

Drive replaces the current <body> with the

<body> from the response.

5. Turbo Drive merges the <head> .

Example:

Clicking this link triggers a Turbo Drive request.

Show Article

To disable Turbo Drive on a specific link, use the

data-turbo="false" attribute:

<a href="/articles/1" data-

turbo="false">Show Article

Turbo Frames

Turbo Frames allow you to break a page into

independent sections that can be updated

individually.

Each frame is defined by a <turbo-frame> tag

with a unique id .

Example:

<turbo-frame id="article_1">

 <h2>Article Title</h2>

 <p>Article content...</p>

</turbo-frame>

When a link or form inside a Turbo Frame is

clicked, Turbo Drive only updates the content

within that frame.

This isolates updates and improves perceived

performance.

Lazy Loading with src :

This loads the comments section only when the

frame is visible, improving initial page load time.

<turbo-frame id="comments"

src="/comments"></turbo-frame>

Page 2 of 30 https://cheatsheetshero.com

https://hotwire.dev/
https://turbo.hotwire.dev/
https://stimulus.hotwire.dev/
https://github.com/hotwired
https://gorails.com/search?q=hotwire
https://www.driftingruby.com/episodes?query%5Bname%5D=hotwire&tag=hotwire
https://hotwire.io/newsletter
https://www.stimulus-components.com/
https://masilotti.com/newsletter/
https://cheatsheetshero.com/

Turbo Streams

Turbo Streams deliver targeted updates to the

page via WebSocket, SSE (Server-Sent Events),

or as a result of form submissions.

They consist of actions (like append , prepend ,

replace , update , remove) that target

specific DOM elements.

Example:

This appends a new comment to the element

with id comments .

app/views/comments/create.turbo_stream.e

rb

<%= turbo_stream.append "comments",

partial: "comments/comment", locals: {

comment: @comment } %>

To broadcast Turbo Streams from a model

callback:

app/models/comment.rb

after_create_commit {

broadcast_append_to :comments }

Available Actions: (and more)

append

prepend

replace

update

remove

To handle Turbo Stream responses in JavaScript:

document.addEventListener("turbo:before-

stream-render", (event) => {

 const { target, template } =

event.detail

 // Perform custom logic here

});

Installation and Setup

1. Add turbo-rails to your Gemfile:

gem 'turbo-rails'

2. Run bundle install:

bundle install

3. Install Turbo:

This generates the necessary JavaScript files

and modifies your application layout.

rails turbo:install

4. Include Turbo JavaScript in your

application.js :

import "@hotwired/turbo-rails"

Gotchas and Considerations

JavaScript Execution: Turbo Drive preserves

JavaScript state across page visits. Ensure your

JavaScript is idempotent and handles Turbo Drive

events appropriately (e.g., turbo:load ,

turbo:frame-load).

Form Submissions: Ensure your forms are set up

to handle Turbo Drive. Use form_with in Rails,

which generates forms compatible with Turbo.

SEO: Turbo enhances user experience without

negatively impacting SEO, as the server still

renders full HTML pages.

Accessibility: Ensure your Turbo-powered

application remains accessible by using semantic

HTML and ARIA attributes.

Testing: Test your Turbo-powered features using

system tests to ensure they function as expected

in a browser environment.

Page 3 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Turbo Drive

Turbo Drive Overview

Turbo Drive enhances web application speed by

intercepting clicks on links and form submissions.

Instead of full page reloads, it uses

XMLHttpRequest to fetch the new page, then

updates the current page’s <body> and

<title> with the new content. This leads to

faster navigation and a smoother user experience.

When a Turbo Drive-enabled link is clicked:

1. Turbo Drive prevents the browser from

following the link.

2. It issues an XMLHttpRequest to fetch the

page.

3. Upon completion, it replaces the current

<body> with the <body> of the response.

4. Merges the content of <head> (title, meta

tags, etc.).

5. The browser’s history is updated.

Enabling Turbo Drive

Turbo Drive is enabled by default in Rails 7 when

using the turbo-rails gem.

To ensure it’s active, verify that turbo-rails is

in your Gemfile and that you’ve included //=

require turbo in your application.js or

equivalent entrypoint.

To explicitly enable Turbo Drive, include the Turbo

JavaScript file in your application’s JavaScript

bundle. For example, using webpacker or

jsbundling-rails, ensure the following is present in

your application.js :

import * as Turbo from "@hotwired/turbo"

Turbo.start()

Disabling Turbo Drive

You can disable Turbo Drive on specific links or

forms by adding the data-turbo="false"

attribute. This tells Turbo Drive to ignore the link

or form and allow the browser to handle it

normally (full page reload).

Example (Link):

<%= link_to "Full Reload", some_path,

data: { turbo: false } %>

Example (Form):

<%= form_with url: some_path, data: {

turbo: false } do |form| %>

 <%= form.submit "Full Reload Submit"

%>

<% end %>

To disable Turbo Drive application-wide (not

generally recommended), you can remove the

turbo-rails gem or prevent the Turbo

JavaScript from loading. However, it’s usually

better to selectively disable Turbo Drive where

necessary.

Turbo Drive Events

turbo:before-visit

Fired before Turbo Drive visits a location. Can be

used to prevent the visit by calling

event.preventDefault() .

turbo:visit

Fired when Turbo Drive starts a visit.

turbo:before-cache

Fired before Turbo Drive caches the page. Useful

for cleaning up temporary resources.

turbo:before-render

Fired before Turbo Drive renders the new page.

Allows modification of the new document.body

before it replaces the current one.

turbo:render

Fired after Turbo Drive renders the new page.

turbo:load

Fired after Turbo Drive finishes loading the new

page. Similar to DOMContentLoaded .

turbo:frame-render

Fired after a Turbo Frame is rendered.

Handling JavaScript with Turbo Drive

Since Turbo Drive replaces the <body> of the

page, you need to ensure your JavaScript is

properly re-evaluated on each Turbo Drive visit.

Use the turbo:load event to initialize

JavaScript that needs to run after each page load.

Avoid using DOMContentLoaded directly, as it

only fires on the initial page load.

Example:

document.addEventListener('turbo:load',

() => {

 console.log('Turbo Drive page

loaded');

 // Initialize your JavaScript here

});

For libraries or components that need to be

properly disposed of when navigating away from

a page, use the turbo:before-cache event to

clean up resources and prevent memory leaks.

Example:

document.addEventListener('turbo:before-

cache', () => {

 console.log('Cleaning up before

caching');

 // Dispose of resources here

});

Troubleshooting Turbo Drive

If you encounter issues with Turbo Drive, such as

JavaScript not running or unexpected behavior,

check the following:

Ensure turbo-rails gem is correctly

installed and turbo is required in your

application.js .

Verify that you’re using the turbo:load

event for initializing JavaScript instead of

DOMContentLoaded .

Check for JavaScript errors in the browser

console that might be preventing Turbo Drive

from functioning correctly.

Use data-turbo="false" to selectively

disable Turbo Drive for problematic links or

forms to isolate issues.

Inspect network requests in your browser’s

developer tools to confirm that Turbo Drive is

indeed making XMLHttpRequest requests

instead of full page reloads.

Look for the Turbo-Visit header in the request

to confirm Turbo Drive is active.

Page 4 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Turbo Frames

Turbo Frames Overview

Turbo Frames allow you to update specific parts

of a page without requiring a full page reload. This

enhances user experience by making updates feel

faster and more responsive.

They work by wrapping sections of your page in

<turbo-frame> tags. When a link or form inside

a frame is activated, Turbo Drive intercepts the

request and updates only the contents of that

frame, leaving the rest of the page untouched.

This approach reduces server load and network

bandwidth, leading to improved performance,

especially in complex web applications.

Basic Implementation

HTML (View)

<turbo-frame id="my_frame">

 <%= render "partial" %>

</turbo-frame>

Rails (Partial - _partial.html.erb)

<p>Current time: <%= Time.now %></p>

<%= link_to "Refresh", root_path %>

Explanation

The turbo-frame with id="my_frame" will

only update when the “Refresh” link is clicked. The

rest of the page remains unchanged.

Lazy Loading with Turbo Frames

HTML (Lazy Loading)

<turbo-frame id="lazy_frame"

src="/lazy_content">

 <p>Loading...</p>

</turbo-frame>

Rails (Controller)

app/controllers/application_controller.r

b

def lazy_content

 render turbo_frame: "lazy_frame" do

 render partial: "lazy_partial"

 end

end

Rails (Partial - _lazy_partial.html.erb)

<p>This content was loaded lazily!</p>

Explanation

The frame with src attribute will load content

from /lazy_content upon insertion into the

DOM. A ‘Loading…’ message is displayed until

loaded.

Targeting Turbo Frames

Targeting a specific frame

You can target a specific Turbo Frame from a link

or form using the data-turbo-frame attribute.

This will update the frame with the ID

other_frame when the link is clicked.

<%= link_to "Update Other Frame",

other_path, data: { turbo_frame:

"other_frame" } %>

Targeting _top

Using data-turbo-frame="_top" will cause a

full page reload.

<%= link_to "Full Reload", root_path,

data: { turbo_frame: "_top" } %>

Targeting _parent

Using data-turbo-frame="_parent" will target

the parent frame of the current element.

<%= link_to "Update Parent Frame",

parent_path, data: { turbo_frame:

"_parent" } %>

Form Submissions inside Turbo Frames

HTML (Form)

<turbo-frame id="form_frame">

 <%= form_with url: "/submit_form",

data: { turbo_frame: "form_frame" } do

|form| %>

 <%= form.text_field :name %>

 <%= form.submit "Submit" %>

 <% end %>

</turbo-frame>

Rails (Controller)

app/controllers/application_controller.r

b

def submit_form

 # Process form data

 render turbo_frame: "form_frame" do

 render partial: "form_result"

 end

end

Rails (Partial - _form_result.html.erb)

<p>Form submitted successfully!</p>

Explanation

Submitting the form will replace the content

within form_frame with the _form_result

partial. data: { turbo_frame: "form_frame" }

ensures the response targets the correct frame.

Page 5 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Turbo Streams

Introduction to Turbo Streams

Turbo Streams deliver asynchronous updates to

the browser by appending, prepending, replacing,

updating, or removing elements on a page. They

are typically used with Action Cable for real-time

updates but can also be triggered by standard

controller actions.

Turbo Streams use specific MIME types

(text/vnd.turbo-stream.html) to trigger

updates. The server responds with HTML

fragments that contain instructions on how to

modify the DOM.

Turbo Streams are an efficient way to update

parts of a page without requiring a full page

reload, enhancing the user experience.

They are especially useful for features like live

comments, chat applications, and real-time

dashboards.

Turbo Streams leverage the turbo_stream tag

helper and Action Cable’s broadcasting

capabilities for seamless integration.

Turbo Stream Actions

append

Inserts content at the end of the target element.

Example:

<%= turbo_stream.append 'comments',

partial: 'comments/comment', locals: {

comment: @comment } %>

prepend

Inserts content at the beginning of the target

element.

Example:

<%= turbo_stream.prepend 'comments',

partial: 'comments/comment', locals: {

comment: @comment } %>

replace

Replaces the entire target element with the new

content.

Example:

<%= turbo_stream.replace 'comment_1',

partial: 'comments/comment', locals: {

comment: @comment } %>

update

Updates the content inside the target element,

leaving the element itself intact.

Example:

<%= turbo_stream.update 'comment_1',

partial: 'comments/comment', locals: {

comment: @comment } %>

remove

Removes the target element from the DOM.

Example:

<%= turbo_stream.remove 'comment_1' %>

Creating Turbo Stream Responses

In your controller, you can respond with Turbo

Stream templates to trigger updates.

Use the respond_to block to handle the

turbo_stream format.

Example:

class CommentsController <

ApplicationController

 def create

 @comment =

Comment.new(comment_params)

 if @comment.save

 respond_to do |format|

 format.turbo_stream { render

turbo_stream:

turbo_stream.append('comments', partial:

'comments/comment', locals: { comment:

@comment }) }

 format.html { redirect_to

@comment.post }

 end

 else

 # Handle errors

 end

 end

end

Alternatively, use turbo_frame_tag for a more

concise approach when dealing with specific

frames.

Page 6 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Broadcasting with Action Cable

Action Cable can broadcast Turbo Streams to

update multiple clients in real-time.

Use turbo_stream_from in your views to

subscribe to a stream.

Example:

<%= turbo_stream_from 'comments' %>

In your model or controller, use

broadcast_append_to ,

broadcast_prepend_to ,

broadcast_replace_to ,

broadcast_update_to , or

broadcast_remove_to .

Example:

class Comment < ApplicationRecord

 after_create_commit {

broadcast_append_to 'comments', partial:

'comments/comment', locals: { comment:

self } }

 after_update_commit {

broadcast_replace_to 'comments',

partial: 'comments/comment', locals: {

comment: self } }

 after_destroy_commit {

broadcast_remove_to 'comments', target:

"comment_#{id}" }

end

Ensure Action Cable is properly configured in

your Rails application, including setting up the

necessary routes and connection class.

Turbo Stream Templates

Turbo Stream templates are

.turbo_stream.erb files that define the actions

to be performed on the DOM.

These templates are rendered and sent to the

client, where Turbo Drive processes them.

Example: create.turbo_stream.erb

<%= turbo_stream.append 'comments' do %>

 <%= render 'comments/comment',

comment: @comment %>

<% end %>

Use partials to keep your templates DRY and

maintainable.

Leverage the turbo_stream tag helper for

concise and readable templates.

Targeting Elements

Using IDs Target specific elements using

their IDs. This is the most

common and straightforward

approach.

Example:

<%= turbo_stream.replace

'comment_1', 'New

content' %>

Using CSS

Selectors

You can use CSS selectors to

target elements, providing

more flexibility.

Example:

<%= turbo_stream.update

'.comment', 'Updated

content' %>

Considerations Ensure your target elements

have unique IDs to avoid

unintended updates. When

using CSS selectors, be

specific to prevent broad

changes.

Advanced Turbo Streams Usage

Combining Multiple Actions: You can combine

multiple Turbo Stream actions in a single

response.

Example:

<%= turbo_stream.append('comments',

partial: 'comments/comment', locals: {

comment: @comment })

 concat

turbo_stream.update('comment_count',

Comment.count) %>

Conditional Updates: Implement conditional logic

to determine whether to send a Turbo Stream

based on specific conditions.

Example:

if @comment.approved?

 render turbo_stream:

turbo_stream.append('approved_comments',

partial: 'comments/comment', locals: {

comment: @comment })

else

 # Do something else

end

Custom Actions: While less common, you can

define custom Turbo Stream actions by

extending Turbo Native.

Error Handling: Implement error handling to

gracefully manage situations where Turbo Stream

updates fail.

Page 7 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Custom Turbo Stream Actions

Custom Turbo Stream Actions

Backend (Ruby on Rails) Frontend (JavaScript)

Define helper methods in

app/helpers/turbo_stream_actions_helper.rb to generate custom

Turbo Stream actions.

module TurboStreamActionsHelper

 def close_modal

 turbo_stream_action_tag(:close_modal)

 end

 def open_modal(modal_id)

 turbo_stream_action_tag(:open_modal, modal_id: modal_id)

 end

 def upsert_modal(modal_id, partial: nil, locals: {})

 html_content =

ApplicationController.renderer.render(partial: partial, locals:

locals)

 turbo_stream_action_tag(:upsert_modal, modal_id: modal_id,

html: html_content)

 end

end

Turbo::Streams::TagBuilder.prepend(TurboStreamActionsHelper)

Define JavaScript functions to handle the custom Turbo Stream actions.

StreamActions.open_modal = function() {

 const modal_id = this.getAttribute("modal_id")

 const modal = document.querySelector(modal_id)

 modal.classList.remove("hidden")

 modal.showModal()

}

StreamActions.upsert_modal = function() {

 const modal_id = this.getAttribute("modal_id")

 const modal_html = this.getAttribute("html")

 const modal = document.querySelector(modal_id)

 if(modal) {

 modal.remove()

 }

 document.body.insertAdjacentHTML("beforeend", modal_html);

}

StreamActions.close_modal = function() {

 document.querySelectorAll("dialog").forEach(dialog => {

 dialog.close()

 })

}

Include the helper in your controllers.

class MyController < ApplicationController

 def my_action

 respond_to do |format|

 format.turbo_stream do

 render turbo_stream: \

 turbo_stream.close_modal

 end

 end

 end

end

Ensure your JavaScript is loaded and accessible. Typically, this code is placed in

app/javascript/packs/application.js or a similar entry point.

import * as Turbo from "@hotwired/turbo"

Turbo.start()

import { StreamActions } from '@hotwired/turbo'

StreamActions.open_modal = function() { ... }

StreamActions.close_modal = function() { ... }

StreamActions.upsert_modal = function() { ... }

window.StreamActions = StreamActions

Using open_modal in a controller action:

def show

 @item = Item.find(params[:id])

 respond_to do |format|

 format.turbo_stream do

 render turbo_stream: \

 turbo_stream.open_modal("#item_modal")

 end

 end

end

Example HTML for a modal:

<dialog id="item_modal" class="hidden">

 <h2>Item Details</h2>

 <p>...</p>

 <button

onclick="document.getElementById('item_modal').close()">Close</butt

on>

</dialog>

Page 8 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Using upsert_modal to render a partial inside a modal.

def new

 @item = Item.new

 respond_to do |format|

 format.turbo_stream do

 render turbo_stream: \

 turbo_stream.upsert_modal("#new_item_modal", partial:

'items/form', locals: { item: @item })

 end

 end

end

Make sure your StreamActions are globally accessible, or accessible within

the scope where Turbo Stream responses are handled. The last line in the first

code example window.StreamActions = StreamActions is important.

The turbo_stream_action_tag method generates the necessary HTML

tags.

turbo_stream_action_tag(:close_modal)

=> <turbo-stream action="close_modal"></turbo-stream>

turbo_stream_action_tag(:open_modal, modal_id: '#my_modal')

=> <turbo-stream action="open_modal" modal_id="#my_modal">

</turbo-stream>

When a <turbo-stream> tag with a custom action is processed, Turbo

Streams will look for a corresponding function in the StreamActions object.

If the function exists, it’s executed; otherwise, an error might occur.

Ensure the ApplicationController.renderer is configured correctly for

rendering partials outside of a normal request/response cycle. Verify that all

necessary helpers and context are available within the renderer.

For debugging, use console.log within your JavaScript functions to ensure

they are being called and that the attributes are being correctly read from the

<turbo-stream> tags.

When passing data from the backend to the frontend using

turbo_stream_action_tag , ensure that the data is properly escaped to

prevent any potential security vulnerabilities (e.g., XSS attacks).

Use request.variant = :turbo_stream in your controller if you want to

render different templates based on the request format, for example, render a

full page for HTML requests and only the modal content for Turbo Stream

requests.

Instead of directly manipulating the DOM, consider using Stimulus

controllers within your modals for more complex interactions and state

management. This keeps your code organized and maintainable.

When updating a modal with new content, consider using Turbo Frames to

update specific parts of the modal instead of replacing the entire modal. This

can improve performance and reduce flicker.

Always test your custom Turbo Stream actions thoroughly to ensure they

behave as expected in different scenarios. Pay attention to edge cases and

potential error conditions.

Consider using custom events to trigger actions within your JavaScript code.

This allows for a more decoupled and flexible architecture.

Example of using a custom event to close a modal:

document.dispatchEvent(new CustomEvent('close-modal'));

document.addEventListener('close-modal', function() {

 document.querySelectorAll("dialog").forEach(dialog => {

 dialog.close()

 })

});

Remember to handle errors gracefully in your JavaScript code. Display user-

friendly messages or log errors to the console for debugging purposes.

For more complex modal interactions, consider using a dedicated modal

library or component. This can provide additional features and improve the

overall user experience.

Ensure that your custom Turbo Stream actions are compatible with different

browsers and devices. Test your code on a variety of platforms to ensure a

consistent experience.

When using Turbo Streams to update the DOM, be mindful of the potential

for race conditions. Ensure that your JavaScript code is properly

synchronized to prevent unexpected behavior.

Document your custom Turbo Stream actions thoroughly. This will make it

easier for other developers to understand and maintain your code.

Page 9 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Stimulus.js Overview

Introduction to Stimulus

Stimulus is a modest JavaScript framework

designed for enhancing HTML with dynamic

behavior. It’s designed to work well with Turbo,

allowing you to build modern web applications

without a lot of complex JavaScript.

Key features:

Lightweight: Minimal footprint, easy to learn

and use.

HTML-centric: Uses HTML data attributes to

bind JavaScript behavior.

Complementary to Turbo: Designed to

enhance server-rendered HTML, not replace

it.

Stimulus promotes a structured approach to

JavaScript in Rails applications, making code

more maintainable and easier to understand.

Core Concepts

Controllers JavaScript objects that manage the

behavior of DOM elements. They

are the primary building blocks of

Stimulus applications.

Targets Specific DOM elements within a

controller’s scope that the

controller can interact with.

Actions Methods in the controller that are

triggered by DOM events on

elements within the controller’s

scope.

Values A way to store and manage data

within a controller, making it easy

to access and update values from

the DOM.

Setting Up Stimulus

1. Install Stimulus:

yarn add @hotwired/stimulus

or

npm install @hotwired/stimulus

2. Import and Start Stimulus:

In your application.js or similar entry

point:

import { Application, Controller }

from "@hotwired/stimulus"

const application =

Application.start()

// Configure Stimulus development

experience

application.debug = false

window.Stimulus = application

export { application, Controller }

3. Create Controllers Directory:

Typically, create a controllers directory

within your app/javascript folder to

house your Stimulus controllers.

Simple Stimulus Controller Example

Let’s create a simple controller that displays a

greeting message.

1. Create a Controller File:

app/javascript/controllers/hello_contr

oller.js

import { Controller } from

"@hotwired/stimulus"

export default class extends

Controller {

 static targets = ["name", "output"

]

 greet() {

 this.outputTarget.textContent =

`Hello, ${this.nameTarget.value}!`

 }

}

HTML Usage

1. Add Controller to HTML:

Explanation:

data-controller="hello" : Attaches

the hello controller to the div .

data-hello-target="name" : Makes

the input field accessible as

nameTarget in the controller.

data-action="click->hello#greet" :

Calls the greet method in the hello

controller when the button is clicked.

data-hello-target="output" : Makes

the span accessible as outputTarget

in the controller.

<div data-controller="hello">

 <input data-hello-target="name"

type="text">

 <button data-action="click-

>hello#greet">Greet</button>

</div>

Key Data Attributes

data-controller

Specifies the Stimulus controller to be associated

with the HTML element.

data-target

Defines a target element within the controller’s

scope.

data-action

Binds an event to a controller action.

data-value

Sets a value on the controller that can be

accessed and updated.

Page 10 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Working with Values

Values allow you to store data directly in the

DOM and access it from your Stimulus

controllers.

Example:

//

app/javascript/controllers/counter_contr

oller.js

import { Controller } from

"@hotwired/stimulus"

export default class extends Controller

{

 static values = {

 count: { type: Number, default: 0 }

 }

 connect() {

 this.displayCount()

 }

 increment() {

 this.countValue++

 this.displayCount()

 }

 displayCount() {

 this.element.textContent = `Count:

${this.countValue}`

 }

}

<div data-controller="counter" data-

counter-count-value="5">

 <button data-action="click-

>counter#increment">Increment</button>

 Count: 5

</div>

Debugging Stimulus

1. Enable Debug Mode:

Set application.debug = true in your

application.js to enable detailed logging.

2. Use Browser Developer Tools:

Inspect the DOM and use console.log

statements within your controllers to track

data and events.

3. Check for Errors:

Pay attention to any error messages in the

browser console, as they often indicate

issues with your controller logic or HTML

bindings.

Page 11 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Stimulus.js Controllers

Controller Basics

Stimulus.js controllers enhance HTML with

behavior.

Installation: yarn add

@hotwired/stimulus or npm install

@hotwired/stimulus

Import: import { Controller } from

"@hotwired/stimulus"

Create Controller:

//

app/javascript/controllers/example_co

ntroller.js

import { Controller } from

"@hotwired/stimulus"

export default class extends

Controller {

 connect() {

 console.log("Connected to

element!")

 }

}

Controllers are defined as ES modules and placed

in app/javascript/controllers by convention.

Connecting Controllers to HTML

Use data-controller attribute to connect a

controller to an HTML element.

The data-controller attribute tells

Stimulus to instantiate the

example_controller.js and associate it

with the <div> .

Multiple controllers can be connected to the

same element: data-controller="example

another-controller"

<div data-controller="example">

 <!-- Controller logic applies here -->

</div>

Lifecycle Callbacks

connect()

Called when the controller is connected to the

DOM.

connect() {

 console.log("Controller connected");

}

disconnect()

Called when the controller is disconnected from

the DOM.

disconnect() {

 console.log("Controller

disconnected");

}

initialize()

Called only once when the controller is

instantiated.

initialize() {

 console.log("Controller initialized");

}

Actions

Actions respond to DOM events. Use data-

action to connect events to controller methods.

click->example#greet means on a

click event, call the greet method on

the example controller.

Multiple actions can be defined on a single

element.

<button data-action="click-

>example#greet">Greet</button>

Controller method:

greet() {

 alert("Hello!");

}

Targets

Targets provide direct references to specific

elements within a controller’s scope. Define

targets in the controller definition, and reference

them in your methods.

//

app/javascript/controllers/example_contr

oller.js

import { Controller } from

"@hotwired/stimulus"

export default class extends Controller

{

 static targets = ["name", "output"]

 greet() {

 this.outputTarget.textContent =

`Hello, ${this.nameTarget.value}!`

 }

}

HTML:

data-example-target="name" makes the

input accessible as this.nameTarget .

<div data-controller="example">

 <input data-example-target="name"

type="text">

 <button data-action="click-

>example#greet">Greet</button>

</div>

Page 12 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Values

Values allow you to bind data attributes to typed

values in your controller.

//

app/javascript/controllers/example_contr

oller.js

import { Controller } from

"@hotwired/stimulus"

export default class extends Controller

{

 static values = {

 count: Number,

 message: String,

 isActive: Boolean

 }

 connect() {

 console.log(`Initial count:

${this.countValue}`)

 }

}

HTML:

Values are automatically converted to the

specified type. Available types: Number ,

String , Boolean , Array , Object .

<div data-controller="example" data-

example-count-value="10" data-example-

message-value="Hello" data-example-is-

active-value="true">

 <!-- Controller logic applies here -->

</div>

CSS Classes

CSS Classes can be toggled on and off using

Stimulus. Define class names in the controller,

and use the corresponding methods to

manipulate them.

//

app/javascript/controllers/example_contr

oller.js

import { Controller } from

"@hotwired/stimulus"

export default class extends Controller

{

 static classes = ["hidden"]

 toggle() {

this.element.classList.toggle(this.hidde

nClass)

 }

}

HTML:

data-example-hidden-class="d-none"

sets the hiddenClass to d-none .

<div data-controller="example" data-

example-hidden-class="d-none">

 <button data-action="click-

>example#toggle">Toggle</button>

</div>

Controller Organization

Organize your Stimulus controllers logically within

the app/javascript/controllers directory.

Consider grouping related controllers into

subdirectories.

Example:

The index.js file is crucial for auto-loading

controllers.

app/javascript/controllers/

├── form/

│ ├── address_controller.js

│ └── validation_controller.js

├── navigation_controller.js

└── index.js

//

app/javascript/controllers/index.js

import { application } from

"./application"

import ExampleController from

"./example_controller.js"

application.register("example",

ExampleController)

Using `this.element`

The this.element property in a Stimulus

controller refers to the root DOM element to

which the controller is attached. It provides a

direct way to manipulate the element’s attributes,

styles, or content.

Example:

In this example, this.element is used to add

and remove a CSS class when the controller

connects and disconnects, respectively.

import { Controller } from

"@hotwired/stimulus"

export default class extends Controller

{

 connect() {

 this.element.classList.add("my-

custom-class")

 }

 disconnect() {

 this.element.classList.remove("my-

custom-class")

 }

}

Page 13 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Migrating from Rails UJS to Turbo

Why Migrate to Turbo from Rails UJS?

Rails UJS (Unobtrusive JavaScript) is the traditional way Rails handles JavaScript interactions, relying heavily on jQuery. It’s being phased out in favor of

Hotwire’s Turbo for several compelling reasons:

Performance: Turbo significantly reduces the amount of JavaScript needed, leading to faster page loads and a smoother user experience. It updates parts

of the page over WebSocket (Turbo Streams) or morphs the DOM directly (Turbo Drive) instead of full page reloads.

Modern Approach: Turbo aligns with modern web development practices by minimizing JavaScript dependencies and leveraging server-side rendering

more effectively.

Simplicity: While Rails UJS often involves complex JavaScript setups, Turbo simplifies common interactions with its conventions and minimal

configuration.

Maintainability: Less JavaScript means less code to maintain, debug, and test.

Hotwire Ecosystem: Turbo is part of the Hotwire suite, designed to work seamlessly with Stimulus for enhanced front-end interactivity.

Moving to Turbo provides a more streamlined and performant experience by default.

Page 14 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Step-by-Step Migration Guide

1. Remove rails-ujs :

Remove the rails-ujs gem from your Gemfile .

Remove the corresponding require statement from your app/assets/javascript/application.js or app/javascript/packs/application.js :

Run bundle install to uninstall the gem.

Gemfile

gem 'rails-ujs' # Remove this line

// application.js

// require("rails-ujs") // Remove this line

2. Install Turbo:

Ensure you have the turbo-rails gem in your Gemfile :

Run bundle install .

Run the Turbo install generator:

This generator adds Turbo Drive and Turbo Frames to your application.

Gemfile

gem 'turbo-rails'

rails turbo:install

3. Replace Data Attributes:

Rails UJS uses data attributes like data-remote , data-method , data-confirm . Turbo uses data-turbo attributes.

Replace instances of data-remote="true" with data-turbo="true" .

Replace data-method="[HTTP_METHOD]" with data-turbo-method="[HTTP_METHOD]" .

For confirmation dialogs, use data-turbo-confirm="Are you sure?" instead of data-confirm="Are you sure?" .

4. Update Form Submissions:

Ensure your forms are submitting correctly with Turbo. By default, Turbo intercepts form submissions and handles them via AJAX.

If you need a full page reload for a specific form, add data-turbo="false" to the form tag.

Use Turbo Streams to update the page in response to form submissions (see Turbo Streams section).

5. Convert Callbacks:

Rails UJS provides JavaScript callbacks like ajax:success , ajax:error , and ajax:complete . Turbo encourages a different approach using

server-sent Turbo Streams or Stimulus controllers.

For example, instead of ajax:success , use a Turbo Stream to append, prepend, replace, or remove elements on the page after a successful form

submission.

6. Remove jQuery dependency

If your application depends on jQuery, consider refactoring to use vanilla JavaScript with Stimulus. This removes the jQuery dependency.

Identify all jQuery usages in your JS code and decide if you can replace them with the default javascript or refactor to Stimulus.

Page 15 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Code Examples: Before and After

Rails UJS (Before)

<%= link_to 'Delete', item_path(item), method:

:delete, data: { confirm: 'Are you sure?' } %>

Turbo (After)

<%= link_to 'Delete', item_path(item), data: { turbo_method: :delete,

turbo_confirm: 'Are you sure?' } %>

Rails UJS (Before)

<%= form_with(model: @article, remote: true) do |form|

%>

 ...

<% end %>

Turbo (After)

Note: Turbo handles the form submission via AJAX by default. Use Turbo Streams in your

controller to update the view after submission.

<%= form_with(model: @article) do |form| %>

 ...

<% end %>

Rails UJS (Before - Custom JS Callback)

$('form').on('ajax:success', function(event) {

 // Handle success

});

Turbo (After - Turbo Stream)

Controller (example):

View (articles/create.turbo_stream.erb):

app/controllers/articles_controller.rb

def create

 @article = Article.new(article_params)

 if @article.save

 render turbo_stream: turbo_stream.append('articles', partial: 'article',

locals: { article: @article })

 else

 render :new

 end

end

<%= turbo_stream.append "articles" do %>

 <%= render @article %>

<% end %>

Rails UJS (Before - data-disable-with)

<%= button_tag 'Submit', data: { disable_with:

'Processing...' } %>

Turbo (After - data-turbo-submits-with)

<%= button_tag 'Submit', data: { turbo_submits_with: 'Processing...' } %>

Rails UJS (Before - remote link with GET method)

<%= link_to 'Get Data', data_path, remote: true,

method: :get %>

**Turbo (After - using data-turbo)

<%= link_to 'Get Data', data_path, data: {turbo: true, turbo_method: :get}

%>

Rails UJS (Before - prevent full page reload)

$('a[data-remote]').on('ajax:beforeSend', function() {

 // Custom logic before sending the request

});

Turbo (After - using Turbo events and preventDefault() in Stimulus)

// app/javascript/controllers/link_controller.js

import { Controller } from "@hotwired/stimulus"

export default class extends Controller {

 connect() {

 this.element.addEventListener("turbo:before-fetch-request",

this.beforeFetchRequest.bind(this))

 }

 beforeFetchRequest(event) {

 //Custom logic before sending the request

 }

}

Page 16 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Action Cable Integration for Turbo Streams

Overview

Integrating Action Cable with Turbo Streams

allows you to broadcast real-time updates to your

Rails application. This enables features like live

comments, real-time notifications, and dynamic

content updates without full page reloads. Turbo

Streams handle the rendering and updating of

specific DOM elements, while Action Cable

provides the real-time communication

infrastructure.

This integration involves configuring Action

Cable, setting up Turbo Streams, and

broadcasting updates from your Rails backend to

connected clients.

Configuration

1. Configure

Action

Cable:

Ensure Action Cable is properly

configured in your

config/cable.yml file.

Typically, you’ll use Redis for

production environments.

2. Setup

Redis

(optional):

If using Redis, ensure it’s running

and accessible to your Rails

application. Update

config/cable.yml to point to

your Redis instance.

3. Mount

Action

Cable:

Mount Action Cable in your

config/routes.rb file:

mount ActionCable.server =>

'/cable'

Creating a Channel

Generate a channel using Rails generators. For

example, to create a CommentsChannel :

rails generate channel Comments

This creates

app/channels/comments_channel.rb and

related files. Modify the channel to handle

subscriptions:

class CommentsChannel <

ApplicationCable::Channel

 def subscribed

 stream_from "comments"

 end

 def unsubscribed

 # Any cleanup logic when user

unsubscribes

 end

end

Page 17 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Broadcasting Turbo Streams

To broadcast Turbo Streams, use the

turbo_stream methods within your Rails

controllers or models.

Example: Broadcasting a new comment:

class CommentsController <

ApplicationController

 def create

 @comment =

Comment.new(comment_params)

 if @comment.save

Turbo::StreamsChannel.broadcast_replace_

later_to(

 "comments",

 target: "new_comment",

 partial: "comments/form",

 locals: {comment: Comment.new}

)

Turbo::StreamsChannel.broadcast_prepend_

later_to(

 "comments",

 target: "comments",

 partial: "comments/comment",

 locals: {comment: @comment}

)

 head :ok

 else

 render :new, status:

:unprocessable_entity

 end

 end

 private

 def comment_params

params.require(:comment).permit(:content

)

 end

end

In this example, turbo_stream.prepend adds a

new comment to the #comments div, and the

turbo_stream.replace replaces the form with

empty one. Make sure you create partials:

app/views/comments/_comment.html.erb

app/views/comments/_form.html.erb

<%= turbo_frame_tag dom_id(comment) do

%>

 <p><%= comment.content %></p>

<% end %>

<%= turbo_frame_tag "new_comment" do %>

 <%= form_with(model: comment, url:

comments_path) do |form| %>

 <%= form.text_area :content %>

 <%= form.submit "Add Comment" %>

 <% end %>

<% end %>

Client-Side Subscription

On the client-side, subscribe to the Action Cable

channel using JavaScript. This is typically done in

your

app/javascript/channels/comments_channel.j

s file:

import consumer from "channels/consumer"

consumer.subscriptions.create("CommentsC

hannel", {

 connected() {

 console.log("Connected to the

comments channel");

 // Called when the subscription is

ready for use on the server

 },

 disconnected() {

 console.log("Disconnected from the

comments channel");

 // Called when the subscription has

been terminated by the server

 },

 received(data) {

 console.log("Received data: ",

data);

 // Called when there's incoming data

on the websocket for this channel

 }

});

Ensure that this JavaScript file is included in your

application’s JavaScript bundle.

Displaying Turbo Streams

Make sure that the container to update exists.

The container is turbo_frame_tag :

<div id="comments">

 <%= render @comments %>

</div>

<%= render "comments/form", comment:

Comment.new %>

When the broadcast reaches the client, Turbo

Streams automatically updates the DOM based

on the specified actions (e.g., prepend ,

append , replace).

Example: Real-time Notifications

You can adapt the same principles to implement

real-time notifications. Create a

NotificationsChannel , broadcast updates

when new notifications are created, and update

the notification list on the client-side.

Turbo::StreamsChannel.broadcast_prepend_

later_to(

 "notifications",

 target: "notifications",

 partial: "notifications/notification",

 locals: { notification: @notification

}

)

Ensure your client-side JavaScript subscribes to

the NotificationsChannel to receive these

updates.

Page 18 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Debugging Techniques and Error Handling

General Debugging Strategies

When debugging Hotwire applications, it’s crucial to use browser developer

tools and server logs effectively.

Inspect Network Requests: Check the network tab for Turbo Drive

requests and Turbo Stream responses.

Use console.log : Add console.log statements in your Stimulus

controllers to track variable values and execution flow.

Examine Server Logs: Monitor Rails server logs for any errors or

unexpected behavior.

Rails Debugger: Utilize debugger , byebug or pry for step-by-step

debugging on the server side.

Set the data-turbo-action attribute to advance , replace , or

restore on links and forms to explicitly control navigation behavior. This

can help identify unexpected navigation actions.

Debugging Turbo Frames

Turbo Frames can sometimes behave unexpectedly if the frame IDs are not

unique or if the server response doesn’t match the expected frame. Here’s

how to debug them:

Check Frame IDs: Ensure that all Turbo Frame IDs on a page are unique

to avoid conflicts.

Verify Server Response: Use browser developer tools to inspect the

HTML returned in the Turbo Frame response. Make sure it contains the

correct content wrapped in the corresponding <turbo-frame> tag.

Inspect turbo:frame-load event: Use event listeners for debugging.

Check for nested frames: Ensure proper nesting of the frames.

Example of using turbo:frame-load event listener:

document.addEventListener('turbo:frame-load', (event) => {

 console.log('Turbo Frame loaded:', event.target.id);

});

Sometimes, content might not load into a Turbo Frame due to JavaScript

errors. Check the browser console for JavaScript errors that might be

preventing the frame from loading correctly.

Debugging Turbo Streams

Turbo Streams are used to update parts of the page dynamically. Debugging

them involves checking the server response and ensuring the correct stream

actions are being applied.

Inspect Stream Response: Check the content type of the response. It

should be text/vnd.turbo-stream.html .

Verify Stream Actions: Ensure the Turbo Stream response contains valid

<turbo-stream> elements with the correct action (e.g., append ,

prepend , replace , remove) and target.

Use turbo:before-stream-render event: Add event listeners for

debugging.

Check for correct target: The target attribute in the stream must match

existing element id on the page

Example of using turbo:before-stream-render event listener:

document.addEventListener('turbo:before-stream-render', (event)

=> {

 console.log('Turbo Stream action:', event.detail.action);

 console.log('Turbo Stream target:', event.detail.target);

});

If a Turbo Stream action is not being applied, check the browser console for

JavaScript errors. Also, ensure that the target element exists on the page

and that the stream action is valid for that element.

Page 19 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Error Handling in Turbo Streams

Implement error handling on the server-side to gracefully handle exceptions

and return appropriate Turbo Stream responses.

Rescue Exceptions: Use rescue_from in your Rails controllers to catch

exceptions and render error messages as Turbo Streams.

Return Error Streams: Return Turbo Stream responses that display error

messages in the UI.

Log Errors: Log detailed error messages on the server for debugging

purposes.

Example of using rescue_from in Rails controller:

class CommentsController < ApplicationController

 rescue_from StandardError, with: :render_error

 def create

 @comment = Comment.new(comment_params)

 if @comment.save

 render turbo_stream: ... # Stream for successful comment

creation

 else

 render turbo_stream:

render_error(@comment.errors.full_messages.join(', '))

 end

 end

 private

 def render_error(message)

 turbo_stream.replace("error_messages", partial:

"shared/error_messages", locals: { errors: message })

 end

end

In some cases, you may want to prevent Turbo Drive from navigating to a

new page on error. You can do this by canceling the turbo:before-visit

event.

document.addEventListener('turbo:before-visit', (event) => {

 if (someConditionThatIndicatesAnError()) {

 event.preventDefault();

 }

});

Stimulus Controller Debugging

Stimulus controllers manage the behavior of your HTML elements.

Debugging them involves ensuring that the controller is correctly connected

and that actions are being triggered as expected.

Check Controller Connection: Verify that the Stimulus controller is

correctly connected to the HTML element using the data-controller

attribute.

Inspect Action Bindings: Ensure that actions are correctly bound to the

controller methods using the data-action attribute.

Use console.log : Add console.log statements in your controller

methods to track the execution flow and variable values.

Browser Debugger: Use the browser’s debugger to step through the

controller code and inspect the state of the application.

<div data-controller="my-controller">

 <button data-action="click->my-controller#handleClick">Click

Me</button>

</div>

// my_controller.js

import { Controller } from "@hotwired/stimulus"

export default class extends Controller {

 connect() {

 console.log("MyController connected");

 }

 handleClick() {

 console.log("Button clicked");

 }

}

If a Stimulus action is not being triggered, check the spelling of the controller

and method names in the data-action attribute. Also, ensure that the

controller is correctly connected to the HTML element.

Page 20 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Turbo Caching and Fallback Behaviors

Integration Testing

Write integration tests to ensure that your Hotwire components are working

correctly together. Use Capybara or Rails system tests to simulate user

interactions and verify the behavior of your application.

Simulate User Interactions: Use Capybara methods to simulate user

interactions, such as clicking buttons and filling in forms.

Assert on Page Content: Use Capybara assertions to verify that the

page content is being updated correctly by Turbo Streams and Turbo

Frames.

Check for JavaScript Errors: Use page.driver.browser.logs to

check for JavaScript errors in your tests.

Example of a Rails system test:

require "application_system_test_case"

class CommentsTest < ApplicationSystemTestCase

 test "creating a comment"

 visit post_path(posts(:one))

 fill_in "comment_body", with: "This is a test comment"

 click_on "Create Comment"

 assert_text "This is a test comment"

 end

end

When writing integration tests, make sure to wait for Turbo Streams and

Turbo Frames to load before asserting on the page content. Use Capybara’s

assert_selector with a wait option to wait for elements to appear on

the page.

Understanding Turbo Caching

Turbo Drive automatically caches pages as you visit them, making

subsequent visits feel instantaneous. It leverages the browser’s history API to

achieve this.

When you navigate back or forward, Turbo Drive restores the page from its

cache, avoiding a full page reload.

This caching mechanism primarily targets GET requests. POST, PUT, and

DELETE requests trigger a full page reload to ensure data consistency.

You can control Turbo’s caching behavior using meta tags in your HTML. For

instance, to disable caching for a specific page:

<meta name="turbo-cache-control" content="no-cache">

This tag instructs Turbo not to cache the current page, ensuring it’s always

fetched from the server.

Alternatively, you can use turbo-cache-control: public to explicitly

allow caching, which is useful if you have a global no-cache setting.

Turbo also respects standard HTTP caching headers like Cache-Control

and Expires .

For dynamic content, consider using Vary header to cache different

versions of a page based on user-specific information (e.g., user ID,

authentication status).

If you are using Turbolinks gem, please consider removing it. Turbo

already covers all the features of Turbolinks .

Debugging Turbo Caching Issues

When encountering unexpected caching behavior, use your browser’s

developer tools to inspect the HTTP cache and verify that pages are being

cached and served correctly.

Check the turbo-cache-control meta tags and HTTP caching headers to

ensure they are configured as intended.

Clear your browser’s cache and cookies to rule out any stale or corrupted

cached data.

Use the Turbo.clearCache() method to programmatically clear Turbo’s

cache during development or testing.

Inspect the network requests in the developer tools to see if pages are being

fetched from the server or served from the cache.

Verify that your server is sending the correct Content-Type headers for

your responses, as incorrect headers can interfere with caching.

If you’re using a CDN, check its caching configuration and ensure it’s

properly caching your assets.

Consider using a logging framework to track Turbo-related events and

identify potential caching issues.

Page 21 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Handling Cache Fallbacks

In scenarios where the Turbo cache is unavailable (e.g., due to a network

error), you can implement fallback behaviors to ensure a smooth user

experience.

One approach is to detect Turbo availability and conditionally perform a full

page reload if Turbo is not present:

if (window.Turbo == null) {

 window.location.reload()

}

This JavaScript snippet checks if the Turbo object is defined. If not, it

triggers a standard page reload, bypassing Turbo’s caching mechanism.

Another strategy involves using service workers to cache critical assets and

provide offline access. Service workers can intercept network requests and

serve cached content when the network is unavailable.

When implementing service workers, ensure they are compatible with Turbo

Drive’s caching strategy to avoid conflicts or unexpected behavior.

Consider using a combination of Turbo Drive caching and service worker

caching for optimal performance and resilience.

If you are using CDN - ensure that proper headers are configured, to enable

caching mechanism on the CDN level.

Fine-Grained Control with Turbo Streams

Turbo Streams offer a more granular way to update specific parts of a page

without requiring a full reload. This can be particularly useful for dynamic

content updates.

You can use Turbo Streams to broadcast changes to connected clients via

WebSocket connections, ensuring real-time updates.

To use Turbo Streams, you typically define actions in your Rails controllers

that render Turbo Stream templates. For example:

app/controllers/comments_controller.rb

def create

 @comment = Comment.new(comment_params)

 if @comment.save

 render turbo_stream: turbo_stream.append("comments",

partial: "comments/comment", locals: { comment: @comment })

 else

 render :new, status: :unprocessable_entity

 end

end

This code appends a new comment to the #comments element on the page

when a comment is successfully created.

Ensure that your Turbo Stream actions are idempotent to handle potential

duplicate broadcasts or re-renders.

Consider using turbo_stream.replace or turbo_stream.update to

modify existing elements on the page, providing a seamless user experience.

Always test Turbo Streams with different network conditions to ensure they

function correctly under varying latency and bandwidth scenarios.

Turbo Frames for Modular Content

Turbo Frames allow you to isolate sections of a page into independent,

cacheable units. This is useful for creating modular and reusable

components.

Each Turbo Frame has a unique id attribute, which Turbo uses to identify

and update the frame’s content.

When a link or form within a Turbo Frame is clicked or submitted, Turbo Drive

only updates the content of that specific frame, leaving the rest of the page

untouched.

Here’s an example of a Turbo Frame:

<turbo-frame id="user_profile">

 <!-- User profile content here -->

</turbo-frame>

If the content inside a <turbo-frame> tag is not immediately available, you

can use the loading attribute to specify a placeholder or loading indicator.

<turbo-frame id="comments" loading="lazy">

 <template>

 Loading comments...

 </template>

</turbo-frame>

Use Turbo Frames to break down complex pages into smaller, manageable

components, improving performance and maintainability.

Nested Turbo Frames are supported, allowing for even greater flexibility in

structuring your application’s UI.

Page 22 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Hotwire Security Considerations

CSRF Protection in Hotwire

Rails’ built-in CSRF protection works seamlessly

with Hotwire. Ensure protect_from_forgery is

included in your ApplicationController .

app/controllers/application_controller.r

b

class ApplicationController <

ActionController::Base

 protect_from_forgery with: :exception

end

When using Turbo Streams with forms, Rails

automatically includes the CSRF token in the

form data. No extra steps are required for

standard form submissions.

For non-standard form submissions (e.g., AJAX-

like requests with Turbo Streams), ensure the

CSRF token is included in the request headers.

You can do this via JavaScript:

// Example using Fetch API

fetch('/your_endpoint', {

 method: 'POST',

 headers: {

 'Content-Type': 'application/json',

 'X-CSRF-Token':

document.querySelector('meta[name="csrf-

token"]').content

 },

 body: JSON.stringify({ key: 'value' })

});

Secure Handling of Turbo Streams

Always validate and sanitize data received via

Turbo Streams to prevent injection attacks.

Ensure that only authorized users can modify

specific parts of the page.

Avoid directly embedding user-supplied data into

Turbo Stream actions without proper escaping.

Use Rails’ built-in sanitization methods.

When rendering Turbo Streams in the controller,

use the escape: false option with caution.

Only use it if you are absolutely sure the content

is safe.

Example: Rendering a Turbo Stream (be

cautious with user input)

render turbo_stream:

turbo_stream.replace(

 'element_id',

 partial: 'your_partial', # Make sure

this partial sanitizes data

 locals: { data: @safe_data } # Only

pass safe data here

)

Implement proper authentication and

authorization checks in your controllers to ensure

that users can only access or modify resources

they are permitted to.

Use strong parameters to whitelist attributes that

can be updated via form submissions or API

requests. This helps prevent mass assignment

vulnerabilities.

Content Security Policy (CSP)

Configure a Content Security Policy (CSP) to

mitigate the risk of Cross-Site Scripting (XSS)

attacks. CSP allows you to define which sources

of content (scripts, stylesheets, images, etc.) the

browser should trust.

In your ApplicationController , set the CSP

header:

app/controllers/application_controller.r

b

class ApplicationController <

ActionController::Base

 before_action

:set_content_security_policy

 def set_content_security_policy

 response.headers['Content-Security-

Policy'] = "script-src 'self'

https://cdn.example.com; object-src

'none';"

 end

end

Adjust the CSP directives based on your

application’s needs. Common directives include

script-src , style-src , img-src , and

default-src . Use 'self' to allow content

from the same origin.

Be mindful of inline scripts and styles, as they are

often blocked by CSP unless you use 'unsafe-

inline' (which reduces security). Consider

using nonces or hashes for inline scripts if

necessary.

When using Stimulus, ensure that your CSP

allows the necessary JavaScript files to be loaded

and executed. You may need to whitelist the CDN

or domain where your Stimulus code is hosted.

Regularly review and update your CSP to address

new threats and ensure compatibility with your

application’s dependencies.

Page 23 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Hotwire Performance Tips & Pitfalls

Optimize Turbo Streams

Partial Page Updates:

Only update the necessary parts of the page with Turbo Streams to minimize

data transfer and rendering time.

Avoid this:

render turbo_stream: turbo_stream.replace('content', partial:

'full_content')

Prefer this:

render turbo_stream: turbo_stream.replace('partial_area',

partial: 'specific_partial')

Batch Turbo Streams:

Combine multiple Turbo Stream actions into a single response to reduce

latency.

render turbo_stream: [turbo_stream.append('list', partial:

'item1'),

 turbo_stream.append('list', partial:

'item2')]

Use turbo_frame_tag Wisely:

Ensure frames are appropriately scoped to avoid unnecessary re-rendering.

<%= turbo_frame_tag 'comments' do %>

 <%= render @comments %>

<% end %>

Lazy Loading:

Defer loading of non-critical content within Turbo Frames until they are

visible.

<turbo-frame id="lazy_content" loading="lazy"

src="/lazy_content_path"></turbo-frame>

Avoid Excessive DOM Manipulation:

Limit the number of DOM changes triggered by Turbo Streams to reduce

browser overhead. Profile with browser dev tools.

Common Pitfalls

Over-reliance on Turbo Frames:

Using too many Turbo Frames can lead to increased complexity and potential

performance issues. Profile each frame’s impact.

Ignoring Network Latency:

Consider network latency when designing interactions. Optimize for fewer

round trips.

Unoptimized Images:

Ensure images are optimized for the web to reduce page load time. Use tools

like ImageOptim or services like Cloudinary.

Excessive JavaScript:

Minimize the amount of JavaScript code to reduce parsing and execution

time. Use code splitting and lazy loading.

Neglecting Browser Caching:

Leverage browser caching to reduce the number of requests to the server.

Configure appropriate cache headers.

Stimulus Controller Optimization

Debounce Actions:

Use debounce to prevent rapid firing of actions, especially on user input.

// Example:

// app/javascript/controllers/search_controller.js

import { Controller } from "@hotwired/stimulus"

import { debounce } from "debounce";

export default class extends Controller {

 static targets = ["input", "results"]

 initialize() {

 this.search = debounce(this.search, 300).bind(this)

 }

 search() {

 // Perform search logic here

 }

}

Disconnect Observers:

Disconnect MutationObservers when the controller is disconnected to

prevent memory leaks.

// Example

disconnect() {

 if (this.observer) {

 this.observer.disconnect()

 }

}

Efficient Data Attributes:

Use data attributes efficiently to pass data to Stimulus controllers, avoiding

unnecessary DOM reads.

<div data-controller="example" data-example-url-

value="/api/data"></div>

Lazy Initialization:

Initialize Stimulus controllers only when they are needed to reduce initial

page load time.

Reduce DOM Queries:

Cache frequently accessed DOM elements to minimize the number of DOM

queries.

connect() {

 this.cachedElement = this.element.querySelector('.my-

element');

}

Page 24 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Server-Side Performance

Optimize Database Queries:

Ensure database queries are efficient to reduce server response time.

Avoid N+1 queries:

@posts = Post.all # Causes N+1 issue when accessing user for

each post

Prefer eager loading:

@posts = Post.includes(:user).all # Solves N+1 issue

Caching:

Implement caching strategies (e.g., fragment caching, Rails.cache) to reduce

database load.

Fragment caching

<% cache @post do %>

 <%= render @post %>

<% end %>

Background Jobs:

Offload time-consuming tasks to background jobs to improve

responsiveness.

Example using ActiveJob

class ProcessDataJob < ApplicationJob

 queue_as :default

 def perform(data)

 # Process data here

 end

end

ProcessDataJob.perform_later(data)

Efficient Rendering:

Optimize view rendering by avoiding complex logic in views and using

partials effectively.

Use Indexes:

Ensure proper database indexes are in place for frequently queried columns.

Benchmarking and Profiling

Rails Benchmark Tool:

Use the Rails benchmark tool to measure the performance of different code

paths.

require 'benchmark'

n = 5000

Benchmark.bm do |x|

 x.report('each:') { n.times do a = []; (1..1000).each {|i|

a << i} end }

 x.report('times:') { n.times do a = []; 1000.times {|i| a <<

i} end }

end

Browser Developer Tools:

Use browser developer tools (e.g., Chrome DevTools) to profile JavaScript

execution, network requests, and rendering performance.

Bullet Gem:

Use the Bullet gem to detect N+1 queries and other performance issues.

Add to Gemfile

gem 'bullet'

Rack Mini Profiler:

Use Rack Mini Profiler to profile Rack middleware and database queries.

Add to Gemfile

gem 'rack-mini-profiler'

Memory Profiling:

Profile memory usage to identify memory leaks and optimize memory

allocation.

Turbo Native Considerations

Optimize Asset Size:

Reduce the size of assets (CSS, JavaScript, images) to minimize download

time on mobile devices.

Native Bridge Overhead:

Be mindful of the overhead of communication between the native app and

the web view. Minimize the number of bridge calls.

Offline Support:

Implement offline support to improve the user experience in areas with poor

connectivity. Use service workers to cache assets and data.

Adaptive Content:

Serve different content based on the device’s capabilities and network

conditions.

Preloading:

Preload critical assets to reduce perceived latency.

Page 25 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Hotwire Common Patterns & Best Practices

Turbo Drive Best Practices

Use Turbo Drive for standard navigation:

Turbo Drive automatically intercepts link clicks

and form submissions, turning them into AJAX

requests. This provides a faster, more responsive

user experience by updating only the changed

parts of the page.

<%= link_to 'Home', root_path %>

Ensure idempotent GET requests:

GET requests should not have side effects. This

ensures that Turbo Drive’s caching and preloading

mechanisms work correctly without unintended

consequences.

Avoid operations that modify data in

GET requests

def show

 @item = Item.find(params[:id])

end

Use turbo_frame_tag for isolated updates:

Wrap sections of your page in

turbo_frame_tag to target specific areas for

updates after form submissions or other actions.

<%= turbo_frame_tag 'comments' do %>

 <%= render @comments %>

<% end %>

Handle Turbo Drive events:

Listen for Turbo Drive events like turbo:before-

fetch-request , turbo:before-render , and

turbo:load to perform custom actions during

the page lifecycle.

document.addEventListener('turbo:load',

() => {

 console.log('Page loaded via Turbo

Drive');

});

Leverage Turbo Streams for real-time updates:

Use Turbo Streams to broadcast changes to the

DOM from the server, enabling real-time updates

without full page reloads.

Broadcast a new comment

after_create_commit do

 broadcast_append_to 'comments',

target: 'comments', partial:

'comments/comment'

end

Turbo Frames Patterns

Nested Frames:

Nest turbo_frame_tag elements to create

independent, updatable regions within a page.

This allows for granular control over updates.

<%= turbo_frame_tag 'outer_frame' do %>

 <%= turbo_frame_tag 'inner_frame' do

%>

 Content for inner frame

 <% end %>

<% end %>

Lazy Loading with Frames:

Use turbo_frame_tag with the loading:

:lazy attribute to load content only when the

frame is scrolled into view, improving initial page

load times.

<%= turbo_frame_tag 'lazy_frame',

loading: :lazy, src: lazy_content_path

%>

Targeting Frames from Forms:

Specify the turbo_frame option in form helpers

to target a specific frame for updates upon form

submission.

<%= form_with(model: @post, turbo_frame:

'post_form') do |form| %>

 ...

<% end %>

Using turbo-frame Attributes:

Utilize attributes like turbo-frame on links and

forms to specify the target frame directly in

HTML.

<a href="/items/1" turbo-

frame="item_details">Show Item

Fallback Content:

Provide fallback content within a

turbo_frame_tag that is displayed if Turbo

Drive is not available or if the frame fails to load.

<%= turbo_frame_tag 'my_frame' do %>

 <p>Loading...</p>

 <template data-turbo-frame="my_frame">

 <p>Content loaded!</p>

 </template>

<% end %>

Turbo Streams Strategies

Broadcast Updates from Models:

Use after_create_commit ,

after_update_commit , and

after_destroy_commit callbacks in your

models to automatically broadcast updates via

Turbo Streams.

class Comment < ApplicationRecord

 after_create_commit {

broadcast_append_to 'comments' }

 after_update_commit {

broadcast_replace_to 'comments' }

 after_destroy_commit {

broadcast_remove_to 'comments' }

end

Target Specific Users or Groups:

Customize the Turbo Stream channel to target

specific users or groups, enabling private or

segmented real-time updates.

broadcast_append_to "user_#

{user.id}_notifications", target:

'notifications', partial:

'notifications/notification'

Use turbo_stream_from in Views:

Subscribe to a Turbo Streams channel in your

views using turbo_stream_from to receive

updates broadcast to that channel.

<%= turbo_stream_from 'comments' %>

Custom Turbo Stream Actions:

Define custom Turbo Stream actions to perform

specific DOM manipulations beyond the built-in

actions (append, prepend, replace, remove, etc.).

// Example: Custom action to highlight

an element

Turbo.StreamActions.highlight =

function() {

this.target.classList.add('highlighted')

;

};

Conditional Broadcasting:

Broadcast Turbo Streams conditionally based on

certain criteria, such as user roles or application

state.

Broadcast only if the comment is

approved

after_create_commit do

 broadcast_append_to 'comments' if

approved?

end

Page 26 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Stimulus Controller Conventions

Naming Conventions:

Use descriptive names for your Stimulus

controllers that reflect their purpose. Follow the

[namespace]--[component]--controller

naming convention.

// app/javascript/controllers/search--

filter_controller.js

import { Controller } from

"@hotwired/stimulus"

export default class extends Controller

{

 connect() {

 console.log("Connected search filter

controller");

 }

}

Data Attributes for Targets and Actions:

Use data-controller , data-target , and

data-action attributes to connect your HTML

elements to your Stimulus controllers.

<div data-controller="search--filter">

 <input type="text" data-search--

filter-target="input">

 <button data-action="search--

filter#search">Search</button>

</div>

Controller Organization:

Organize your Stimulus controllers into logical

directories based on their functionality or the

components they control.

app/javascript/controllers/

├── search/

│ ├── filter_controller.js

│ └── autocomplete_controller.js

└── form/

 └── validation_controller.js

Lifecycle Callbacks:

Leverage Stimulus lifecycle callbacks like

connect() , disconnect() , and

initialize() to manage the state and

behavior of your controllers.

export default class extends Controller

{

 connect() {

 // Called when the controller is

connected to the DOM

 }

 disconnect() {

 // Called when the controller is

disconnected from the DOM

 }

}

Debouncing and Throttling:

Use debouncing or throttling techniques to

optimize the performance of event handlers,

especially for frequently triggered events like

input or scroll .

import { debounce } from 'debounce';

export default class extends Controller

{

 connect() {

 this.search =

debounce(this.search.bind(this), 300);

 }

 search() {

 // Perform search logic

 }

}

Stimulus Advanced Patterns

Using Stores for Shared State:

Implement stores (using libraries like

nanostores) to manage and share state

between multiple Stimulus controllers.

// store.js

import { atom } from 'nanostores'

export const count = atom(0)

// Controller A

import { count } from '../store'

export default class extends Controller

{

 increment() {

 count.set(count.get() + 1)

 }

}

Asynchronous Actions:

Handle asynchronous operations within your

Stimulus actions using async/await or

Promises.

export default class extends Controller

{

 async loadData() {

 const response = await

fetch('/data');

 const data = await response.json();

 // Update the DOM with the data

 }

}

Dynamic Targets:

Dynamically add or remove targets based on

application state or user interactions.

export default class extends Controller

{

 addTarget() {

 const newElement =

document.createElement('div');

 newElement.dataset.target = 'my-

controller.dynamicTarget';

this.element.appendChild(newElement);

 this.targets.refresh(); // Refresh

the targets cache

 }

}

Page 27 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

External Libraries Integration:

Integrate external JavaScript libraries and

frameworks with Stimulus controllers to enhance

functionality.

import Chart from 'chart.js';

export default class extends Controller

{

 connect() {

 new Chart(this.element, {

 type: 'bar',

 data: { ... }

 });

 }

}

Form Submission Handling with Stimulus:

Use Stimulus to handle form submissions,

including validation and AJAX requests.

<form data-controller="form-submit"

data-action="submit->form-

submit#submit">

 <!-- Form fields -->

 <button type="submit">Submit</button>

</form>

import { Controller } from

"@hotwired/stimulus"

export default class extends Controller

{

 submit(event) {

 event.preventDefault()

 fetch(this.element.action, {

 method: this.element.method,

 body: new FormData(this.element)

 })

 .then(response => response.json())

 .then(data => {

 // Handle the response data

 })

 }

}

Performance Optimization

Minimize DOM Manipulations:

Reduce the number of DOM manipulations by

batching updates and using techniques like

requestAnimationFrame .

requestAnimationFrame(() => {

 // Perform multiple DOM updates here

});

Optimize Images and Assets:

Optimize images and other assets to reduce page

size and improve load times.

Use appropriate image formats (e.g., WebP).

Compress images without losing quality.

Use a CDN to serve assets from

geographically distributed servers.

Lazy Loading:

Implement lazy loading for images and other

content that is not immediately visible on the

page.

<img src="placeholder.png" data-

src="actual-image.jpg" loading="lazy">

Caching Strategies:

Implement caching strategies to reduce server

load and improve response times.

Use HTTP caching headers to cache static

assets in the browser.

Implement server-side caching using Rails’

caching mechanisms.

Code Splitting:

Split your JavaScript code into smaller chunks to

reduce the initial load time.

Use tools like Webpack or Rollup to split your

code into separate bundles.

Load only the necessary code for each page

or component.

Testing Hotwire Applications

System Tests with Capybara:

Use system tests with Capybara to test the full

integration of Hotwire components, ensuring that

Turbo Drive, Turbo Frames, and Stimulus

controllers work together correctly.

require "application_system_test_case"

class ItemsTest <

ApplicationSystemTestCase

 test "visiting the index" do

 visit items_url

 assert_selector "h1", text: "Items"

 end

end

JavaScript Testing with Jest or Mocha:

Test your Stimulus controllers using JavaScript

testing frameworks like Jest or Mocha to ensure

that they behave as expected.

// Example Jest test

import { Application } from

"@hotwired/stimulus"

import HelloController from

"../../javascript/controllers/hello_cont

roller"

describe("HelloController", () => {

 it("should display a greeting", () =>

{

 document.body.innerHTML = '<div

data-controller="hello" data-hello-

target="name"></div>'

 const application =

Application.start()

 application.register("hello",

HelloController)

 const element =

document.querySelector("[data-hello-

target='name']")

expect(element.textContent).toEqual("")

 })

})

Page 28 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Integration Tests for Turbo Streams:

Write integration tests to verify that Turbo

Streams are being broadcast and received

correctly, and that the DOM is being updated as

expected.

Example RSpec integration test

it "broadcasts a new comment" do

 expect {

 post comments_path, params: {

comment: { content: "New comment" } }

 }.to change { Comment.count }.by(1)

 assert_turbo_stream action: :append,

target: "comments"

end

Mocking Turbo Streams in Tests:

Mock Turbo Streams in tests to isolate the

components being tested and avoid

dependencies on external systems.

Example RSpec mock

allow(Turbo::StreamsChannel).to

receive(:broadcast_append_to)

Using assert_select_turbo_stream Helper:

Utilize the assert_select_turbo_stream helper

in Rails system tests to assert that Turbo Stream

actions are being performed correctly.

assert_select_turbo_stream action:

:replace, target: "comment_1" do

 assert_select "p", text: "Updated

comment content"

end

Page 29 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

Hotwire custom actions and integration with View Components

Turbo Messages

You can pass many custom actions to turbo_stream_sidebar_actions and

they will be broadcasted in a single message.

Nex this stream action will be captured on JS side

 def update_unread_messages_count(user)

 messages_count = user.messages.unread.count

 turbo_stream_sidebar_actions = [

 Turbo::StreamsChannel.turbo_stream_action_tag(

 :update_unread_messages_count,

 value: messages_count

),

]

 Turbo::StreamsChannel.broadcast_stream_to([user,

:notifications], content:

turbo_stream_sidebar_actions.join("\n"))

 end

StreamActions.update_unread_messages_count = function () {

 const unreadMessagesCount = document.getElementById("unread-

messages-count");

 const messagesCount = parseInt(this.getAttribute("value")) ||

0;

 if (notificationsCount > 0) {

 unreadMessagesCount.textContent = messagesCount;

 unreadMessagesCount.classList.remove("hidden");

 } else {

 unreadMessagesCount.textContent = "";

 unreadMessagesCount.classList.add("hidden");

 }

}

With View Components

This is important code ApplicationController.render to render

view_component anywhere you want.

message_component = Chat::MessageComponent.new(

 viewer: user,

 message: self

)

 turbo_stream_sidebar_actions = [

 Turbo::StreamsChannel.turbo_stream_action_tag(

 :remove,

 target: "sidebar-message-#{message.id}",

),

 Turbo::StreamsChannel.turbo_stream_action_tag(

 :prepend,

 target: "sidebar-messages",

 template:

ApplicationController.render(message_component, layout: false),

),

Turbo::StreamsChannel.turbo_stream_action_tag(:highlight_message

),

]

 Turbo::StreamsChannel.broadcast_stream_to([:sidebar, user],

content: turbo_stream_sidebar_actions.join("\n"))

Page 30 of 30 https://cheatsheetshero.com

https://cheatsheetshero.com/

