
DATA 301
A comprehensive cheat sheet covering essential data analysis tools and techniques, including data representation, Excel, SQL, Python, R,

visualization, open data, APIs, and geospatial concepts.

Data Representation & Excel Basics

Data Representation

Binary: Base-2 numeral system (0, 1).

Fundamental for digital data.

Sizes: MB (Megabyte), GB (Gigabyte), TB

(Terabyte). 1 TB = 1024 GB, 1 GB =

1024 MB.

Data Types: Strings (text), Dates (YYYY-MM-

DD), Floats (decimal numbers).

File

Encodings:

UTF-8 (Unicode Transformation

Format - 8-bit) is the most

common. ASCII, UTF-16 are

others.

Character

Encoding

A character encoding tells the

computer how to interpret raw

zeroes and ones into actual

characters. It determines what

code belongs to which character.

Common encodings: ASCII, UTF-

8, UTF-16

Endianness Describes the order in which bytes

of a multi-byte data type (like

integers) are stored in computer

memory.

Big-Endian: Most significant byte

first. Little-Endian: Least

significant byte first.

Essential Excel Formulas

IF(condition,

value_if_true,

value_if_false

)

Returns one value if a

condition is TRUE and

another value if it’s FALSE.

Example: =IF(A1>10,

"High", "Low")

COUNTIF(range,

criteria)

Counts the number of cells

within a range that meet the

given criteria.

Example: =COUNTIF(B1:B10,

">50")

SUM(number1,

[number2],

...)

Adds all the numbers in a

range of cells.

Example: =SUM(C1:C10)

MAX(number1,

[number2],

...)

Returns the largest value in a

set of numbers.

Example: =MAX(D1:D10)

CONCATENATE(te

xt1, [text2],

...)

Joins several text strings into

one text string. Use &

operator as shortcut.

Example: =CONCATENATE(A1,

" ", B1) or =A1 & " " &

B1

AVERAGE(number

1, [number2],

...)

Calculates the average

(arithmetic mean) of the

numbers in a range.

Example:

=AVERAGE(E1:E10)

Excel - Pivot Tables

Pivot tables are used to summarize and analyze

data. They allow you to rearrange and group data

in different ways to see patterns and trends.

Key Components:

Rows: Categorical fields displayed as rows.

Columns: Categorical fields displayed as

columns.

Values: Numerical fields that are aggregated

(summed, averaged, etc.).

Filters: Used to narrow down the data being

displayed.

Creating a Pivot Table:

1. Select your data range.

2. Go to Insert > PivotTable .

3. Choose where to place the pivot table (new

worksheet or existing location).

4. Drag and drop fields into the Rows, Columns,

Values, and Filters areas.

Example Scenario:

Imagine you have sales data with columns:

Date , Region , Product , Sales . You can

create a pivot table to:

Show total sales by region.

Show average sales by product over time.

Filter the data to show sales for a specific

month.

Page 1 of 4 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/garv-aggarwal/961-data-301-cheatsheet
http://cheatsheetshero.com/user/garv-aggarwal/961-data-301-cheatsheet
http://cheatsheetshero.com/user/garv-aggarwal/961-data-301-cheatsheet
https://cheatsheetshero.com/

SQL Fundamentals

Basic SQL Commands

CREATE TABLE

table_name

(column1

datatype, column2

datatype, ...);

Creates a new table in the

database. Define column

names and their data

types.

Example: CREATE TABLE

Employees (ID INT, Name

VARCHAR(255), Salary

DECIMAL(10, 2));

INSERT INTO

table_name

(column1,

column2, ...)

VALUES (value1,

value2, ...);

Inserts a new row into a

table.

Example: INSERT INTO

Employees (ID, Name,

Salary) VALUES (1,

'John Doe', 60000.00);

UPDATE

table_name SET

column1 = value1,

column2 = value2,

... WHERE

condition;

Modifies existing data in a

table. Use WHERE clause

to specify which rows to

update.

Example: UPDATE

Employees SET Salary =

65000.00 WHERE ID = 1;

DELETE FROM

table_name WHERE

condition;

Deletes rows from a table.

Always use a WHERE

clause to avoid deleting all

rows.

Example: DELETE FROM

Employees WHERE ID =

1;

SELECT column1,

column2, ... FROM

table_name WHERE

condition;

Retrieves data from one or

more tables.

Filtering and Aggregations

WHERE

condition

Filters rows based on a specified

condition.

Example: SELECT * FROM

Employees WHERE Salary >

50000;

GROUP BY

column1,

column2,

...

Groups rows that have the same

values in specified columns.

Often used with aggregate

functions.

Example: SELECT Department,

AVG(Salary) FROM Employees

GROUP BY Department;

ORDER BY

column1

[ASC|DESC],

column2

[ASC|DESC],

...

Sorts the result-set based on

one or more columns. ASC for

ascending, DESC for

descending.

Example: SELECT * FROM

Employees ORDER BY Salary

DESC;

LIMIT

number

Limits the number of rows

returned.

Example: SELECT * FROM

Employees ORDER BY Salary

DESC LIMIT 10;

HAVING

condition

Filters results after grouping,

used with GROUP BY .

Example: SELECT Department,

AVG(Salary) FROM Employees

GROUP BY Department HAVING

AVG(Salary) > 55000;

Joins

JOIN: Returns rows when there is a match in both

tables based on the join condition.

SELECT * FROM TableA JOIN TableB ON

TableA.Column = TableB.Column;

LEFT JOIN (or LEFT OUTER JOIN): Returns all

rows from the left table (TableA), and the

matched rows from the right table (TableB). If

there is no match in TableB, it returns NULL

values for columns from TableB.

SELECT * FROM TableA LEFT JOIN TableB ON

TableA.Column = TableB.Column;

RIGHT JOIN (or RIGHT OUTER JOIN): Returns all

rows from the right table (TableB), and the

matched rows from the left table (TableA). If

there is no match in TableA, it returns NULL

values for columns from TableA.

SELECT * FROM TableA RIGHT JOIN TableB ON

TableA.Column = TableB.Column;

FULL OUTER JOIN: Returns all rows when there

is a match in one of the tables. If there are rows in

TableA that do not match TableB, or rows in

TableB that do not match TableA, the FULL

OUTER JOIN will include these rows in the result

set. Columns that do not have matching values

will contain NULL.

SELECT * FROM TableA FULL OUTER JOIN

TableB ON TableA.Column = TableB.Column;

INNER JOIN: Same as JOIN. Returns rows only

when there’s a match in both tables.

SELECT * FROM TableA INNER JOIN TableB ON

TableA.Column = TableB.Column;

Page 2 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

Python and R Programming

Python Fundamentals

Input Handling: Using try/except blocks

to handle potential errors

when taking user input.

try:

 age =

int(input("Enter your

age: "))

except ValueError:

 print("Invalid

input. Please enter a

number.")

Loops: for and while loops for

iterating over data

structures.

for i in range(5):

 print(i)

while True:

 response =

input("Type 'exit' to

quit: ")

 if response ==

'exit':

 break

List/Dictionary

Logic:

Creating, accessing, and

manipulating lists and

dictionaries.

my_list = [1, 2, 3]

my_dict = {'a': 1,

'b': 2}

print(my_list[0]) #

Accessing list element

print(my_dict['a']) #

Accessing dictionary

value

File Reading &

String Parsing:

Reading data from files and

manipulating strings.

with open('data.txt',

'r') as f:

 content = f.read()

words =

content.split()

Function

Definitions:

Defining reusable blocks of

code.

def greet(name):

 print(f"Hello,

{name}!")

greet("World")

R Programming Fundamentals

Vectors: Creating and manipulating

vectors.

my_vector <- c(1, 2, 3,

4, 5)

print(my_vector[1]) #

Accessing vector element

Subsetting: Using subset() and indexing

to filter data.

subset_data <-

subset(data, column > 10)

print(data[data$column >

10,]) # Indexing

Data Frames: Working with data frames.

df <- data.frame(Name =

c("John", "Jane"), Age =

c(30, 25))

print(df$Name) #

Accessing column

Statistical

Tests:

Performing t-tests and other

statistical analyses.

t.test(data$column1,

data$column2)

Summary

Statistics:

Calculating descriptive

statistics.

summary(data$column)

Data Processing - Python & R

Python - Sum,

Max, Filter:

Simple data processing

operations.

data = [1, 2, 3, 4, 5]

sum_data = sum(data)

max_data = max(data)

filtered_data =

list(filter(lambda x: x

> 2, data))

R - Filtering &

Summary Stats:

Data manipulation and

summary statistics.

data <- c(1, 2, 3, 4,

5)

filtered_data <-

data[data > 2]

summary_data <-

summary(data)

Page 3 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

Visualization, Open Data, and Geospatial

Data Visualization Tools

Python: Using matplotlib and seaborn for

creating visualizations.

import matplotlib.pyplot as plt

import seaborn as sns

sns.histplot(data['column'])

plt.show()

R: Using ggplot2 for creating

visualizations.

library(ggplot2)

ggplot(data, aes(x = column)) +

geom_histogram()

Tableau: A data visualization tool for creating

interactive dashboards and reports.

Dimensions (blue pills) are categorical,

and Measures (green pills) are

numerical.

Drag dimensions and measures to

rows, columns, and marks cards to

create visualizations.

Open Data & APIs

CSV/JSON Data

Loading (Python):

Loading data from CSV and

JSON files.

import pandas as pd

data_csv =

pd.read_csv('data.csv'

)

data_json =

pd.read_json('data.jso

n')

Accessing APIs

(Python):

Accessing data from APIs,

e.g., Google Maps.

import requests

response =

requests.get('https://

maps.googleapis.com/..

.')

data = response.json()

CSV/JSON Data

Loading (R):

Loading data from CSV and

JSON files.

data_csv <-

read.csv('data.csv')

library(jsonlite)

data_json <-

fromJSON('data.json')

Accessing APIs

(R):

Accessing data from APIs

library(httr)

response <-

GET('https://api.examp

le.com/data')

data <-

content(response,

"parsed")

Geospatial (GIS) Fundamentals

Coordinate Data:

Latitude and Longitude are used to specify

locations on Earth. Latitude ranges from -90 to

+90 (degrees North/South), and Longitude

ranges from -180 to +180 (degrees East/West).

Geospatial File Types:

CSV with lat/lon: Simple text file where

columns represent latitude and longitude

coordinates.

KML (Keyhole Markup Language): XML-

based file format for representing

geographic data in Google Earth, Google

Maps, and other GIS software.

Simple Mapping (Python):

Using libraries like folium to create interactive

maps.

import folium

m = folium.Map(location=[40.7128,

-74.0060], zoom_start=10)

m.save('map.html')

Simple Mapping (R):

Using libraries like leaflet to create interactive

maps.

library(leaflet)

leaflet() %>%

 addTiles() %>%

 setView(lng = -74.0060, lat = 40.7128,

zoom = 10)

Page 4 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

