
Object Oriented Program Design
A comprehensive cheat sheet for C++ programming, Object-Oriented Programming (OOP), file I/O, classes, and its application in embedded

systems, including communication protocols, OpenCV library, image and color processing, networking with sockets, 3D and PCB design, dynamic

data management, version control, timing, threads, and Linux-Pi integration.

C++ Fundamentals & OOP

Embedded Systems & Communication

Basic Syntax & Data Types

Variables:

int age = 30;

float pi = 3.14;

char initial =

'J';

bool is_valid =

true;

Operators:

+ (Addition), -

(Subtraction)

* (Multiplication), /

(Division)

% (Modulo), =

(Assignment)

== (Equal), != (Not

equal)

Control Structures:

if (condition) {

... } else { ... }

for (int i = 0; i

< 10; ++i) { ... }

while (condition)

{ ... }

switch (variable)

{ case value: ...

break; }

Functions:

int add(int a, int

b) {

 return a + b;

}

Pointers and

References:

int x = 10;

int *ptr = &x;

// Pointer to x

int &ref = x;

// Reference to x

Memory Management:

new (allocate

memory), delete

(free memory)

int *arr = new

int[10];

delete[] arr;

Object-Oriented Programming (OOP)

Classes and Objects:

class Dog {

public:

 std::string

breed;

 void bark() {

... }

};

Dog myDog;

myDog.breed =

"Labrador";

Encapsulation:

Bundling data and

methods that operate

on that data within a

class.

Use access specifiers

(private ,

protected , public).

Inheritance:

Creating new classes

from existing ones.

class

GermanShepherd :

public Dog { ...

};

Polymorphism:

The ability of an object

to take on many forms.

(e.g., Function

Overloading, Virtual

Functions)

Abstraction:

Showing only

essential attributes

and hiding

unnecessary

information.

Constructors and

Destructors:

Dog() { ... } //

Constructor

~Dog() { ... } //

Destructor

File I/O

Reading from a File:

#include <fstream>

std::ifstream file("example.txt");

std::string line;

if (file.is_open()) {

 while (getline(file, line)) {

 std::cout << line << std::endl;

 }

 file.close();

}

Writing to a File:

#include <fstream>

std::ofstream file("example.txt");

if (file.is_open()) {

 file << "Hello, file!\n";

 file.close();

}

File Modes:

std::ios::in (input), std::ios::out

(output)

std::ios::app (append), std::ios::binary

(binary mode)

Embedded Systems Fundamentals

Microcontrollers:

Small, self-contained

computers on a single

chip.

(e.g., Arduino, STM32)

Real-Time

Operating Systems

(RTOS):

Operating systems

designed for real-

time applications.

(e.g., FreeRTOS)

Memory Types:

RAM (Random Access

Memory), ROM (Read-

Only Memory)

Flash Memory , EEPROM

Peripherals:

GPIO (General

Purpose

Input/Output)

UART , SPI , I2C

(Communication

Interfaces)

ADC/DAC (Analog-

to-Digital/Digital-to-

Analog Converters)

Interrupts:

Hardware or software

signals that cause the

processor to suspend its

current execution and

handle a specific event.

Timers:

Used for timing

events, generating

PWM signals, etc.

Embedded Communication Protocols

UART (Universal

Asynchronous

Receiver/Transmitter):

Simple serial

communication protocol.

Used for point-to-point

communication.

SPI (Serial

Peripheral

Interface):

Synchronous serial

communication

protocol.

Used for short-

distance, high-

speed

communication.

I2C (Inter-Integrated

Circuit):

Two-wire serial

communication protocol.

Used for connecting

multiple devices to a

single bus.

CAN (Controller

Area Network):

Robust

communication

protocol for

automotive and

industrial

applications.

Bluetooth:

Wireless communication

protocol for short-range

communication.

WiFi:

Wireless

communication

protocol for longer-

range

communication.

Page 1 of 4 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/daniel-skowronski/976-object-oriented-program-design-cheatsheet
http://cheatsheetshero.com/user/daniel-skowronski/976-object-oriented-program-design-cheatsheet
http://cheatsheetshero.com/user/daniel-skowronski/976-object-oriented-program-design-cheatsheet
https://cheatsheetshero.com/

Timing and Threads

Timing:

#include <chrono>

#include <thread>

auto start =

std::chrono::high_resolution_clock::now(

);

std::this_thread::sleep_for(std::chrono:

:milliseconds(100));

auto end =

std::chrono::high_resolution_clock::now(

);

auto duration =

std::chrono::duration_cast<std::chrono::

microseconds>(end - start);

Threads:

#include <thread>

void task() { ... }

std::thread t(task);

t.join(); // Wait for thread to finish

Mutexes:

Used to protect shared resources from

concurrent access.

#include <mutex>

std::mutex mtx;

mtx.lock();

// Access shared resource

mtx.unlock();

Page 2 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

Image Processing & OpenCV

OpenCV Basics

Loading an Image:

#include

<opencv2/opencv.hp

p>

cv::Mat image =

cv::imread("image.

jpg");

if (image.empty())

{ ... }

Displaying an Image:

cv::imshow("Image

", image);

cv::waitKey(0);

// Wait for a key

press

Image Data Structure:

cv::Mat (Matrix) -

Stores image data.

Access pixel values

using

image.at<cv::Vec3b>

(row, col)[channel]

Basic Image

Operations:

Resizing, Cropping,

Color Conversion (e.g.,

BGR to Grayscale)

Saving an Image:

cv::imwrite("outpu

t.jpg", image);

Video Capture

cv::VideoCapture

cap(0); // open

default camera

if(!cap.isOpened(

)){return -1;}

cv::Mat frame;

cap >> frame; //

get a new frame

from camera

Image and Color Processing

Image Filtering:

Blurring, Sharpening,

Edge Detection

(e.g.,

cv::GaussianBlur ,

cv::Sobel)

Color Spaces:

BGR , Grayscale ,

HSV (Hue, Saturation,

Value)

Converting between

color spaces using

cv::cvtColor

Thresholding:

Converting an image

to binary using a

threshold value.

(e.g.,

cv::threshold)

Color Detection:

Isolating specific colors

in an image by

thresholding in HSV

color space.

Morphological

Operations:

Erosion, Dilation,

Opening, Closing

(e.g., cv::erode ,

cv::dilate)

Histogram Equalization

 cv::equalizeHist(

image,

hist_equalized_imag

e);

Advanced Image Processing

Feature Detection:

Detecting key points and features in an image.

(e.g., cv::SIFT , cv::ORB , cv::HoughLines)

Object Detection:

Identifying objects in an image using pre-trained

models.

(e.g., cv::CascadeClassifier for face

detection, YOLO , SSD using DNN module)

Image Segmentation:

Dividing an image into multiple segments or

regions.

(e.g., Watershed Algorithm, K-Means Clustering)

Page 3 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

Networking, Data, and Version Control

Network Sockets

Creating a Socket:

#include

<sys/socket.h>

#include

<netinet/in.h>

int sockfd =

socket(AF_INET,

SOCK_STREAM, 0);

Binding a Socket:

sockaddr_in addr;

addr.sin_family =

AF_INET;

addr.sin_port =

htons(8080);

addr.sin_addr.s_addr

= INADDR_ANY;

bind(sockfd,

(sockaddr*)&addr,

sizeof(addr));

Listening for

Connections:

listen(sockfd,

5); // Max 5

pending

connections

Accepting a Connection:

sockaddr_in

client_addr;

socklen_t client_len

=

sizeof(client_addr);

int client_sockfd =

accept(sockfd,

(sockaddr*)&client_a

ddr, &client_len);

Sending and

Receiving Data:

send(client_sock

fd, buffer,

length, 0);

recv(client_sock

fd, buffer,

length, 0);

Closing a Socket:

close(sockfd);

Dynamic Data and Memory Management

Dynamic Arrays:

int *arr = new

int[size];

// ...

delete[] arr;

Linked Lists:

Dynamic data

structure for storing

elements in a

sequence.

Requires manual

memory

management.

Smart Pointers:

std::unique_ptr ,

std::shared_ptr ,

std::weak_ptr

Automatically manage

memory and prevent

memory leaks.

Memory Leaks:

Occur when

dynamically

allocated memory is

not properly

deallocated.

Use smart pointers

or manual memory

management

carefully.

RAII (Resource

Acquisition Is

Initialization):

A programming idiom

where resources are

acquired during object

construction and released

during object destruction.

Placement new

#include <new>

void* buffer =

malloc(sizeof(M

yObject));

MyObject* obj =

new (buffer)

MyObject();

Version Control with Git

Basic Git Commands:

git init (initialize a new repository)

git clone <url> (clone an existing repository)

git add <file> (stage changes)

git commit -m "message" (commit changes)

Branching and Merging:

git branch <branch_name> (create a new

branch)

git checkout <branch_name> (switch to a

branch)

git merge <branch_name> (merge a branch

into the current branch)

Remote Repositories:

git remote add origin <url> (add a remote

repository)

git push origin <branch_name> (push

changes to remote repository)

git pull origin <branch_name> (pull changes

from remote repository)

Page 4 of 4 https://cheatsheetshero.com

https://cheatsheetshero.com/

