#### CHEAT **ENGGEN 140** SH



#### **Fundamentals**

## Units and Dimensions

|                            |                                                                                                                                                                                                                                                   |                            |          | _                     |                                                                                                                                                            | Problem Solving                                                                                                                                        |  |  |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Base Units<br>(SI)         | Quantity                                                                                                                                                                                                                                          | Unit                       | Symbol   | Mean<br>(Average)     | $\langle (\bar{x} = rac{\sum_{i=1}^{n} x_i}{n} \rangle)$                                                                                                  | Problem-Solving Steps:                                                                                                                                 |  |  |
|                            | Length                                                                                                                                                                                                                                            | n meter m                  |          |                       | The middle value when data is sorted.                                                                                                                      | 1. Understand: Read the problem carefully.                                                                                                             |  |  |
|                            | Mass                                                                                                                                                                                                                                              | kilogram                   | kg       | Median                |                                                                                                                                                            | <ol> <li>Plan: Devise a plan to solve the problem.</li> <li>Carry Out: Execute the plan.</li> <li>Look Back: Review the solution and method</li> </ol> |  |  |
|                            | Time                                                                                                                                                                                                                                              | second                     | S        | Standard<br>Deviation | $egin{aligned} & igwedge (s=\sqrt{rac{\sum_{i=1}^n(x_i-ar{x})^2}{n-1}}igvedymed ) \ & igvee(s^2=rac{\sum_{i=1}^n(x_i-ar{x})^2}{n-1}igvee) \end{aligned}$ |                                                                                                                                                        |  |  |
|                            | Temperature                                                                                                                                                                                                                                       | Kelvin                     | К        |                       |                                                                                                                                                            |                                                                                                                                                        |  |  |
|                            | Current                                                                                                                                                                                                                                           | Ampere                     | А        | Variance              |                                                                                                                                                            |                                                                                                                                                        |  |  |
|                            | Amount of                                                                                                                                                                                                                                         | mole                       | mol      | Probability           | $(A) = \frac{Number of favorable outcomes}{Total number of outcomes}$                                                                                      | Modeling Assumptions:                                                                                                                                  |  |  |
| Derived Units              | substance<br>Luminous                                                                                                                                                                                                                             | candela                    | cd       | Error S<br>Analysis   | Systematic vs. Random errors. Calculatea                                                                                                                   | Identify and state any assumptions made in th<br>andpropagateerrorsappropriately.<br>problem.                                                          |  |  |
|                            | Area: <b>m<sup>2</sup></b>                                                                                                                                                                                                                        |                            | Analysis |                       | <b>Example:</b><br>Neglecting air resistance in projectile motion problems.                                                                                |                                                                                                                                                        |  |  |
|                            | Volume: $m^3$<br>Density: $kg/m^3$<br>Velocity: $m/s$<br>Acceleration: $m/s^2$<br>Force: Newton (N) =<br>$kgcdotm/s^2$<br>Pressure: Pascal (Pa) = $N/m^2$<br>Energy: Joule (J) = $Ncdotm$<br>Power: Watt (W) = $J/s$<br>Use conversion factors to |                            |          |                       |                                                                                                                                                            | Estimation:<br>Develop reasonable estimates for unknown<br>quantities.<br>Example:<br>Estimating the height of a building.                             |  |  |
|                            |                                                                                                                                                                                                                                                   |                            |          |                       |                                                                                                                                                            | Approximations:<br>Using approximations to simplify the problem.<br>Example:                                                                           |  |  |
| Conversion                 | change units.<br>Example:<br>Convert 10 km to meters:                                                                                                                                                                                             |                            |          |                       |                                                                                                                                                            | Small angle approximation: $\sin(\theta) \approx \theta$ for smal                                                                                      |  |  |
|                            |                                                                                                                                                                                                                                                   |                            |          |                       |                                                                                                                                                            | Verification and Validation:<br>Ensure the solution is correct and makes sense                                                                         |  |  |
|                            | 10 kmimes 1                                                                                                                                                                                                                                       |                            |          |                       |                                                                                                                                                            | <b>Iterative Methods</b> :<br>Use iterative methods to find solutions when                                                                             |  |  |
| Dimensional<br>Homogeneity | Equations mu<br>consistent. Ch<br>dimensions or<br>equation are t                                                                                                                                                                                 | neck that t<br>n both side | he       |                       |                                                                                                                                                            | closed-form solutions are unavailable.                                                                                                                 |  |  |
| Significant<br>Figures     | Rules for dete<br>figures in calc<br>attention to re                                                                                                                                                                                              | ulations. P                | ау       |                       |                                                                                                                                                            |                                                                                                                                                        |  |  |
| Uncertainty                | Express result<br>uncertainty. R                                                                                                                                                                                                                  |                            | es as    |                       |                                                                                                                                                            |                                                                                                                                                        |  |  |

## **Engineering Applications**

(value  $\pm$  uncertainty) unit.

| м  | ما | cł | າລ | ni | ics |  |
|----|----|----|----|----|-----|--|
| 11 | e  | u  | Ia | 11 | 5   |  |

# Thermodynamics

| Force          | $\sum F_x = 0$                                      | First Lav              | w of Thermodynamics |
|----------------|-----------------------------------------------------|------------------------|---------------------|
| Equilibrium    |                                                     | Heat Tra               | nsfer               |
| Stress         | $\sigma = \frac{F}{A}$                              | Conduct                | ion                 |
| Strain         | $\epsilon = \frac{\Delta L}{L}$                     | Convecti               | ion                 |
| Young's        | $(\mathbf{E} = \frac{\sigma}{\epsilon})$            | Radiation              | 1                   |
| Modulus        |                                                     | Ideal Gas              | Law                 |
| Hooke's<br>Law | F = kx                                              |                        |                     |
| 12: 13         | ¢                                                   | 2 1 2 . 4              |                     |
| Kinematics     | $v = v_0 + at$ $\Delta x = v_0 t + \frac{1}{2}at^2$ | $v_0^- + 2u\Delta x_0$ |                     |

#### Circuits

| Ohm's Law                        | V = IR                                                                      |
|----------------------------------|-----------------------------------------------------------------------------|
| Power                            | $P = VI = I^2 R = \frac{V^2}{R}$                                            |
| Series Resistance                | $R_{eq} = R_1 + R_2 + \ldots + R_n$                                         |
| Parallel Resistance              | $\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \ldots + \frac{1}{R_n}$ |
| Kirchhoff's Current<br>Law (KCL) | $\sum I_{in} = \sum I_{out}$                                                |
| Kirchhoff's Voltage<br>Law (KVL) | $\sum V_{loop} = 0$                                                         |