

Algbra 1 final

A comprehensive cheat sheet covering essential Algebra I concepts, formulas, and techniques. This guide includes data representation, linear equations, functions, exponential functions, and quadratics.

Outliers

Data Representation and Analysis

Data Representations

Measures of Central Tendency and Spread

Dot Plot: Simple way to represent data, each dot represents a single observation.	Histogram: Groups data into bins and displays the frequency of each bin as a bar. No spaces between bars.	Mean: Average of all data points. Sum of values divided by the number of values. Mean = (sum of x) /	Median: Middle value when data is ordered. If there are two middle values, average them.	Outliers: Data points that are significantly different from other data points in the set. Can be identified using the 1.5 * IQR rule: Lower Bound = Q1 - 1.5 * IQR Upper Bound = Q3 + 1.5 * IQR
Box and Whisker Plot: Displays the five-number summary: minimum, first quartile (Q1), median (Q2), third quartile (Q3), and maximum.	Useful for identifying the spread and skewness of the data.	n Mode: Value that appears most frequently in the data set.	Range: Difference between the maximum and minimum values. Range = Max - Min	Values outside these bounds are considered outliers.
		Standard Deviation: Measures the spread of data around the mean. A lower standard deviation indicates data points are	IQR (Interquartile Range): Difference between the third quartile (Q3) and the first quartile	

(Q1).

IQR = Q3 - Q1

Linear Equations, Inequalities, and Systems

Linear Equations

Standard Form: (Ax + By = C)	Slope-Intercept Form: y = mx + b, where m is the slope and b is the y-intercept.
Point-Slope Form: y - y1 = m(x - x1), where m is the slope and (x1, y1) is a point on the line.	Solving Linear Equations: Use inverse operations to isolate the variable. Simplify both sides before isolating the variable.

Systems of Equations

closer to the mean.

Substitution Method: Solve one equation for one variable and substitute that expression into the other equation.	Elimination Method: Add or subtract multiples of the equations to eliminate one variable.	Graphing Linear Inequalities: Graph the boundary line (dashed for < or >, solid for \leq or \geq). Shade the region that satisfies the inequality.	Systems of Inequalities: Graph each inequality and find the overlapping shaded region,
Applications: Mixture problems.	Solving Systems: Find the values of the		which represents the solution set.
wind/current problems, age problems, coin problems, perimeter problems.	variables that satisfy all equations in the system. Represented as an ordered pair (x, y).	Linear Programming: Optimize an objective function subject to constraints. Graph the constraints and find the feasible region. The optimal	Example: y > 2x + 1

Functions and Function Notation

Function Basics

Function Notation: f(x) represents the value of the function f at x.	Writing Functions: Express the relationship between input (x) and output (f(x)).	Absolute Value Function: f(x) = x V-shaped graph with vertex at	Piecewise Functions: Defined by different expressions over differe intervals of the domain.
Tables: Represent function values in a table format with input and output values.	Graphing: Plot points (x, f(x)) on a coordinate plane to visualize the function.	(0,0).	f(x) = { x^2, x < 0 { x + 1, x > 0
		Absolute Value as Piecewise:	Example: f(x) = x-2

 $|x| = \{ x, x \}$ >= 0 {-x, x < 0

Types of Functions

Domain and Range

solution occurs at a vertex of the feasible region.

Linear Inequalities

nt	Domain: Set of all possible input values (x) for which the function is defined.	Range: Set of all possible output values (f(x)) of the function.
>=	Set Builder Notation: {x condition} Example: {x x > 0}	Interval Notation: Use brackets [] for inclusive endpoints and parentheses () for exclusive endpoints. Example: $(0, \infty)$

Inverse Functions

Inverse Function:

If f(x) maps x to y, then $f^{-1}(y)$ maps y back to x. To find the inverse, swap x and y and solve for y.

Exponential Functions

Exponential Function Basics

Exponent Rules

General Form: $f(x) = a * b^{A}x$ where a is the initial value and b is the base (growth/decay factor).	Exponential Growth: b > 1 The function increases as x increases.	Exponent Rules Summary: • (x^m * x^n = x^(m+n)) • ((x^m) / (x^n) = x^(m-n)) • ((x^m)^n = x^(m*n)) • ((xy)^n = x^n * y^n)	Compound Interest Formula: A = P(1 + r/n)^(nt) where: A = the future value of the investment/loan, including interest P = the principal investment amount (the initial
Exponential Decay: 0 < b < 1 The function decreases as x increases.	Solving Exponential Equations: Use logarithms or rewrite with a common base.	 (x/y)^n = x^n / y^n x^0 = 1 x^(-n) = 1 / x^n 	 deposit or loan amount) r = the annual interest rate (as a decimal) n = the number of times that interest is compounded per year t = the number of years the money is invested or borrowed for

Percent of Change

Compound Interest

Percent of Change Formula:

Percent Change = ((New Value - Old Value) / Old Value) * 100

- Positive result indicates percent increase.
- Negative result indicates percent decrease.

Quadratic Functions

Factoring

Quadratic Forms and Graphs

Factoring Quadratics: Expressing a quadratic expression as a product of two binomials. Example: $x^2 + 5x + 6 =$	Zero Product Property: If $ab = 0$, then a = 0 or $b = 0$. Used to solve	Standard Form: $f(x) = ax^2 + bx$ + c	Factored Form: f(x) = a(x - r1)(x - r2), where r1 and r2 are the roots (x- intercepts).
(x + 2)(x + 3)	factored quadratic equations.	Vertex Form: f(x) = a(x - b)	Graphing Quadratics: Parabola shape.
Difference of Squares: a^2 - b^2 = (a + b)(a - b)	Perfect Square Trinomial: (a^2 + 2ab + b^2) = (a + b)^2 (a^2 - 2ab + b^2) = (a - b)^2	$(h, k)^{2} + k$, where (h, k) is the vertex.	Vertex is the minimum (if a > 0) or maximum (if a < 0) point.

Solving Quadratic Equations

Quadratic Formula: $x = (-b \pm \sqrt{b^2 - 4ac}) / (2a)$ Used to find the roots of a quadratic equation in standard form.	Completing the Square: Transform the quadratic equation into vertex form and solve for x.	
Discriminant:	Geometric Patterns:	
$\Delta = b^2 - 4ac$	Quadratic functions can	
 If Δ > 0, two 	represent areas and	
real solutions.	patterns that grow	
• If $\Lambda = 0$ one	quadratically.	

• If $\Delta < 0$, no real solutions (two complex solutions).

real solution.