
Dockerfile Cheat Sheet
A comprehensive cheat sheet for Dockerfiles, covering essential commands, syntax, and best practices for building efficient Docker images. Includes

examples and explanations for common use cases.

Dockerfile Basics

File Management and Execution

Base Image Instruction

FROM Sets the base image for subsequent

instructions. It’s the foundation of your

image.

Example:

FROM ubuntu:latest

Syntax FROM <image>[:<tag>] [AS <name>]

<image> : The name of the image (e.g.,

ubuntu, node).

<tag> : (Optional) A specific version or

label (e.g., 16.04, latest).

<name> : (Optional) Assigns an alias if

using multi-stage builds.

Usage Always start with a FROM instruction. Use

specific tags for reproducibility.

Multi-stage

Builds

Use AS to name a stage and reference it

later.

Example:

FROM maven:3.6.3-jdk-11 AS builder

WORKDIR /app

COPY pom.xml .

COPY src ./

RUN mvn clean install

FROM openjdk:11-jre-slim

COPY --from=builder

/app/target/my-app.jar app.jar

ENTRYPOINT ["java", "-jar",

"app.jar"]

Metadata Instructions

LABEL Adds metadata to the image in key-value

pairs.

Example:

LABEL

maintainer="john.doe@example.com"

LABEL version="1.0.1"

LABEL description="A simple web

application image"

Syntax LABEL <key>=<value> <key>=<value>

...

Keys and values should be properly quoted

if they contain spaces.

Best

Practices

Use reverse DNS notation for keys to avoid

conflicts (e.g., com.example.version).

Combine multiple labels in a single

instruction for efficiency.

Multiline

Labels

Labels can span multiple lines using

backslashes.

Example:

LABEL description="This text

illustrates \

that label-values can span

multiple lines."

Environment Variables

ENV Sets environment variables inside the

container.

Example:

ENV APP_HOME /app

ENV PORT 8080

Syntax ENV <key> <value> or ENV <key>=

<value>

The first form allows setting multiple

variables at once. The second is more

readable for single variables.

Variable

Usage

Environment variables can be used in other

instructions.

Example:

ENV APP_HOME /app

WORKDIR $APP_HOME

Best

Practices

Use ENV to define variables that should be

configurable at runtime.

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/898-dockerfile-cheat-sheet
http://cheatsheetshero.com/user/all/898-dockerfile-cheat-sheet
http://cheatsheetshero.com/user/all/898-dockerfile-cheat-sheet
https://cheatsheetshero.com/

Networking and Build Arguments

Advanced Dockerfile Concepts

File Operations

COPY Copies files or directories from the host to

the container.

Example:

COPY ./app /app

Syntax COPY [--chown=<user>:<group>]

<src>... <dest>

--chown : (Optional) Changes the

ownership of the copied files.

<src> : Source file or directory on the

host.

<dest> : Destination path inside the

container.

ADD Similar to COPY , but also supports

extracting compressed files and fetching

remote URLs.

Example:

ADD ./app.tar.gz /app/

ADD https://example.com/app.zip

/app/

Best

Practices

Prefer COPY over ADD unless you need

the extra features of ADD . This makes the

build more predictable.

Execution Instructions

RUN Executes commands inside the container

during the build process.

Example:

RUN apt-get update && apt-get

install -y --no-install-recommends

nginx

Syntax RUN <command> (shell form) or RUN

["executable", "param1", "param2"]

(exec form)

The exec form avoids shell interpretation

and is generally preferred.

CMD Specifies the command to run when the

container starts. Can be overridden by

docker run arguments.

Example:

CMD ["nginx", "-g", "daemon off;"]

Entrypoint Configures a container that will run as an

executable.

Example:

ENTRYPOINT ["executable",

"param1", "param2"]

Directory Management

WORKDIR Sets the working directory for subsequent

instructions.

Example:

WORKDIR /app

RUN echo "Hello" > file.txt #

Creates /app/file.txt

Syntax WORKDIR <path>

If the directory doesn’t exist, it will be

created.

VOLUME Creates a mount point for accessing and

storing data outside the container’s file

system.

Example:

VOLUME ["/data"]

Important

Notes

Changes to the volume are not included

when updating the image. Volumes are

designed for persistent storage.

Networking Instruction

EXPOSE Declares the ports that the container will

listen on at runtime. It’s informative but

doesn’t actually publish the port.

Example:

EXPOSE 80

EXPOSE 443

Syntax EXPOSE <port>[/<protocol>] [<port>

[/<protocol>]...]

<protocol> : Can be tcp (default) or

udp .

Publishing

Ports

To actually publish the ports, use the -p

or -P flags with docker run .

Build Arguments

ARG Defines variables that can be passed during the

build process using the --build-arg flag.

Example:

ARG version

RUN echo "App Version: $version"

Syntax ARG <name>[=<default value>]

Arguments can have default values.

Usage Build arguments are useful for passing sensitive

information or configuration values at build

time.

Example (using docker build):

docker build --build-arg version=1.2.3

.

Scope Arguments are only available during the build

process and are not stored in the final image

unless explicitly set as environment variables.

User Instruction

USER Sets the user to use when running

subsequent RUN , CMD , and ENTRYPOINT

instructions.

Example:

USER nginx

Syntax USER <username>[:<group>] or USER

<UID>[:<GID>]

Can be a username or a numeric UID.

Best

Practices

Avoid running processes as root for

security reasons. Create a dedicated user

and group for your application.

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Healthcheck Instruction

HEALTH

CHECK

Configures a health check command to

determine if a container is healthy.

Example:

HEALTHCHECK --interval=5m --

timeout=3s \

 CMD curl -f http://localhost/ ||

exit 1

Syntax HEALTHCHECK [OPTIONS] CMD <command>

(exec form) or HEALTHCHECK NONE (disable

healthcheck)

Options:

--interval=<duration> : Time

between checks (default: 30s).

--timeout=<duration> : Time to wait

before considering the check a failure

(default: 30s).

--start-period=<duration> : Initial

startup time to allow the container to

initialize (default: 0s).

--retries=<number> : Number of

consecutive failures needed to consider

the container unhealthy (default: 3).

Return

Codes

0 : healthy, 1 : unhealthy, 2 : reserved

(don’t use).

Onbuild Instruction

ONBUILD Defers the execution of a command

until the image is used as the base for

another build. It is triggered when a

downstream image is built.

Example:

ONBUILD RUN echo "Running

onbuild..."

Syntax ONBUILD <INSTRUCTION>

Any valid Dockerfile instruction can be

used.

Use Cases Useful for creating reusable base

images that perform common tasks,

such as installing dependencies or

setting up configurations in derived

images.

Important

Considerations

Avoid using ONBUILD instructions

that depend on specific paths or

configurations in the derived image. It

can lead to unexpected behavior if

not used carefully.

Shell Instruction

SHELL Overrides the default shell used for the

shell form of the RUN , CMD , and

ENTRYPOINT instructions.

Example:

SHELL ["/bin/bash", "-c"]

RUN echo "Hello, world!"

Syntax SHELL ["executable", "param1",

"param2"]

Specifies the executable to use as the

shell. Defaults to ["/bin/sh", "-c"] on

Linux or ["cmd", "/S", "/C"] on

Windows.

Strict

Mode

Example

Run commands in strict shell.

ENV my_var

SHELL ["/bin/bash", "-euo",

"pipefail", "-c"]

With strict mode:

RUN false # fails build like

using &&

RUN echo "$myvar" # will throw

error due to typo

RUN true | false # will bail out

of pipe

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

