
Makefile Cheatsheet
A comprehensive cheat sheet for Makefiles, covering syntax, variables, rules, functions, and command prefixes, along with practical examples.

Makefile Basics

Advanced Features

Syntax Overview

A Makefile consists of rules, variables, and directives.

General Structure:

target : The file to be created or updated.

prerequisites : Files required for the target.

command : Action to be executed.

target: prerequisites

command

Comments:

This is a comment

Including Makefiles:

include other.mk

-include optional.mk # Ignore if it doesn't

exist

Variables

Variable

Assignment
VAR = value #

Recursive assignment

VAR := value # Simple

assignment

VAR ?= value #

Conditional assignment

VAR += more_value # Append

Variable Usage
$(VAR) # Access

variable

${VAR} #

Alternative syntax

Example
SRC = main.c utils.c

OBJ = $(SRC:.c=.o) #

Substitutes .c with .o

all: $(OBJ)

gcc -o myprogram $(OBJ)

Rules

Explicit

Rule
target: prerequisite1

prerequisite2

command1

command2

Implicit

Rule
%.o: %.c

gcc -c -o $@ $<

Pattern

Rule
$(OBJ): %.o: %.c

gcc -c -o $@ $<

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/863-makefile-cheatsheet
http://cheatsheetshero.com/user/all/863-makefile-cheatsheet
http://cheatsheetshero.com/user/all/863-makefile-cheatsheet
https://cheatsheetshero.com/

Common Patterns & Best Practices

Functions

String

Functions
$(subst FROM,TO,TEXT)

Substitution

$(patsubst

PATTERN,REPLACEMENT,TEXT) #

Pattern substitution

$(strip STRING)

Remove leading/trailing

whitespace

$(findstring FIND,IN)

Find string

$(filter PATTERN,TEXT)

Filter matching words

$(filter-out PATTERN,TEXT)

Filter out matching words

$(sort LIST)

Sort list

$(word N,TEXT)

Extract nth word

$(wordlist START,END,TEXT)

Extract wordlist

$(words TEXT)

Count words

$(firstword TEXT)

First word

File Name

Functions
$(dir NAMES) #

Directory part

$(notdir NAMES) # Non-

directory part

$(suffix NAMES) # Suffix

part

$(basename NAMES) #

Basename part

$(addsuffix SUFFIX,NAMES) #

Add suffix

$(addprefix PREFIX,NAMES) #

Add prefix

$(join LIST1,LIST2) # Join

lists

$(wildcard PATTERN) #

Wildcard expansion

$(realpath NAMES) #

Canonicalize file names

$(abspath NAMES) #

Absolute file name

Conditional

Functions
$(if CONDITION,THEN-

PART,ELSE-PART)

$(or

CONDITION1,CONDITION2,...)

$(and

CONDITION1,CONDITION2,...)

Directives

Conditional

Directives
ifeq (ARG1, ARG2)

 ...commands...

else

 ...commands...

endif

ifdef VARIABLE

 ...commands...

else

 ...commands...

endif

Include Directive
include filenames...

-include filenames... #

Non-fatal

Override Directive
variable := value

override variable :=

new_value

Command Execution

Commands are executed by the shell. Each command is

executed in a separate subshell.

Example:

all:

echo "Starting..."

date

echo "Done."

Use $(shell command) to execute a shell command and

use its output as a variable value.

Example:

VERSION := $(shell git describe --tags --

abbrev=0)

Target-Specific Variable Values

You can define variable values that are specific to a target.

Syntax:

Example:

target : variable = value

foo.o : CFLAGS = -O2

bar.o : CFLAGS = -g

Pattern-Specific Variable Values

You can define variable values that are specific to a

pattern of targets.

Syntax:

This sets CFLAGS to -O2 for all .o files.

%.o : CFLAGS = -O2

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Debugging and Options

Order-only Prerequisites

Order-only prerequisites are listed after a pipe symbol

| . They ensure that certain targets are built before the

current target, but they don’t cause the current target to

rebuild if they are updated.

Syntax:

Example:

target: normal-prerequisites | order-only-

prerequisites

all: myprogram

myprogram: foo.o bar.o | config.h

gcc -o myprogram foo.o bar.o

config.h:

./configure

Phony Targets

Phony targets are targets that do not represent actual

files. They are typically used to define actions like

clean , all , install , etc.

Syntax:

Example:

.PHONY: target_name

.PHONY: all clean

all: myprogram

clean:

rm -f *.o myprogram

Makefile Options

make Starts make process.

make -f

<filename

>

Specifies the makefile to use.

make -n

or make --

just-

print

Prints the commands that would be

executed, without actually executing them

(dry run).

make -B

or make --

always-

make

Unconditionally make all targets.

make -j

[N] or

make --

jobs=[N]

Specifies the number of jobs to run

simultaneously. If N is omitted, make runs

as many jobs simultaneously as possible.

make -k

or make --

keep-

going

Continue as much as possible after an

error.

Debugging Tips

Use make -n or make --just-print to see the

commands that Make will execute.

Use make -d for verbose output, including variable

assignments and implicit rules.

Use $(warning TEXT) or $(error TEXT) to print

debugging messages during Makefile parsing.

Example Makefile

Variables

CC = gcc

CFLAGS = -Wall -g

SRC = main.c helper.c

OBJ = $(SRC:.c=.o)

TARGET = myapp

Phony target

.PHONY: all clean

Default target

all: $(TARGET)

Link the object files to create the target

$(TARGET): $(OBJ)

$(CC) $(CFLAGS) -o $(TARGET) $(OBJ)

Compile C source files to object files

%.o: %.c

$(CC) $(CFLAGS) -c -o $@ $<

Clean target

clean:

rm -f $(OBJ) $(TARGET)

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

