CHEAT
SHEETS

Makefile Basics

Makefile Cheatsheet

A comprehensive cheat sheet for Makefiles, covering syntax, variables, rules, functions, and command prefixes, along with practical examples.

Syntax Overview Variables Rules
A Makefile consists of rules, variables, and directives. Variable VAR = value P Explicit target: prerequisitel
Assignment Recursive assignment Rule rerequisite2
General Structure: assig p q
VAR := value # Simple commandl
target: prerequisites assignment command2
command VAR ?= value
Conditional assignment Implicit %.0° %.cC
o target :The file to be created or updated. VAR += more_value # Append Rule gce -c -0 $@ $<
. prerequisites : Files required for the target.
Variable Usage
. # Acces Pattern
e command :Action to be executed. S(VAR) ceess $(0BJ): %.0: %.C
variable Rule gcc -c -0 $@ $<
Comments: ${VAR}

This is a comment

Including Makefiles:

include other.mk
-include optional.mk # Ignore if it doesn't

exist

Advanced Features

Page 1 of 3

Example

Alternative syntax

SRC = main.c utils.c
0BJ = $(SRC:.c=.0) #
Substitutes .c with .o
all: $(0BJ)

gcc -o myprogram $(0BJ)

https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/863-makefile-cheatsheet
http://cheatsheetshero.com/user/all/863-makefile-cheatsheet
http://cheatsheetshero.com/user/all/863-makefile-cheatsheet
https://cheatsheetshero.com/

Functions

Directives

String
Functions

File Name
Functions

Conditional

Functions

$(subst FROM, TO, TEXT)

Substitution

$(patsubst

PATTERN, REPLACEMENT, TEXT) #
Pattern substitution
$(strip STRING)

Remove leading/trailing
whitespace

$(findstring FIND, IN)

Find string

$(filter PATTERN, TEXT)

Filter matching words
$(filter-out PATTERN,TEXT)
Filter out matching words
$(sort LIST)

Sort list

$(word N, TEXT)

Extract nth word
$(wordlist START,END, TEXT)
Extract wordlist

$(words TEXT)

Count words

$(firstword TEXT)

First word

$(dir NAMES) #
Directory part

$(notdir NAMES) # Non-
directory part

$(suffix NAMES) # Suffix
part

$(basename NAMES) #
Basename part

$(addsuffix SUFFIX,NAMES) #
Add suffix

$(addprefix PREFIX,NAMES) #
Add prefix

$(join LIST1,LIST2) # Join
lists

$(wildcard PATTERN) #
Wildcard expansion
$(realpath NAMES) #
Canonicalize file names
$(abspath NAMES) #

Absolute file name

$(if CONDITION, THEN-

PART, ELSE-PART)

$(or
CONDITION1,CONDITION2,...)
$(and
CONDITION1,CONDITION2, ...)

Common Patterns & Best Practices

Target-Specific Variable Values

Conditional
Directives

ifeq (ARG1l, ARG2)
...commands. ..

else
...commands. ..

endif

ifdef VARIABLE
...commands. ..

else
...commands. ..

endif

Include Directive

include filenames...

-include filenames...

Non-fatal

Override Directive

Command

variable := value

override variable :

new_value

Execution

Commands are executed by the shell. Each command is

executed in a separate subshell.

Example:

all:
echo
date

echo

Use $(shell command) to execute a shell command and

"Starting..."

"Done . "

use its output as a variable value.

Example:

VERSION

abbrev=0)

:= $(shell git describe --tags --

Pattern-Specific Variable Values

You can define variable values that are specific to a target.

Syntax:

target

Example:

foo.o :

bar.o :

Page 2 of 3

CFLAGS
CFLAGS

: variable = value

-02

-9

You can define variable values that are specific to a

pattern of targets.

Syntax:

%.0 : CFLAGS = -02

This sets CFLAGS to -02 forall .o files.

https://cheatsheetshero.com

https://cheatsheetshero.com/

Order-only Prerequisites

Phony Targets

Order-only prerequisites are listed after a pipe symbol

| . They ensure that certain targets are built before the

current target, but they don't cause the current target to

rebuild if they are updated.

Syntax:

target: normal-prerequisites | order-only-

prerequisites

Example:

all: myprogram

myprogram: foo.o bar.o | config.h

gcc -o myprogram foo.o bar.o

config.h:

./configure

Debugging and Options

Makefile Options

Phony targets are targets that do not represent actual
files. They are typically used to define actions like

clean , all , install ,etc

Syntax:

.PHONY: target_name

Example:

.PHONY: all clean
all: myprogram

clean:

rm -f *.o myprogram

Debugging Tips

Example Makefile

make

make -f
<filename

>

make -n
or make --
just-

print

make -B
or make --
always-

make

make -j
[N] or
make --

jobs=[N]

make -k
or make --
keep-

going

Page 3 of 3

Starts make process.

Specifies the makefile to use.

Prints the commands that would be
executed, without actually executing them
(dry run).

Unconditionally make all targets.

Specifies the number of jobs to run
simultaneously. If N is omitted, make runs
as many jobs simultaneously as possible.

Continue as much as possible after an

error.

Use make -n or make --just-print to seethe
commands that Make will execute.

Use make -d for verbose output, including variable
assignments and implicit rules.

Use $(warning TEXT) or $(error TEXT) to print

debugging messages during Makefile parsing.

Variables

CC = gcc

CFLAGS = -Wall -g

SRC = main.c helper.c
0OBJ = $(SRC:.c=.0)
TARGET = myapp

Phony target
.PHONY: all clean

Default target
all: $(TARGET)

Link the object files to create the target
$(TARGET): $(0BJ)
$(CC) $(CFLAGS) -0 $(TARGET) $(0BJ)

Compile C source files to object files
%.0: %.C
$(CC) $(CFLAGS) -c -0 $@ $<

Clean target
clean:

rm -f $(0BJ) $(TARGET)

https://cheatsheetshero.com

https://cheatsheetshero.com/

