
GnuPG (GPG) Cheatsheet
A comprehensive guide to using GnuPG (GPG) for encryption, signing, and key management. This cheatsheet covers essential commands and

workflows for securing your communications and data.

Key Management

Encryption and Decryption

Generating Keys

Generate a new key pair:

This command starts an interactive process to generate a

new key pair. You’ll be prompted for various options like

key type, key size, and expiration date.

gpg --gen-key

Generate a new key pair with dialogs for all options:

Provides more detailed options during key generation,

such as selecting the key algorithm and curve.

gpg --full-gen-key

Batch Key Generation (without interaction):

Automates key generation, useful for scripting. Replace

Your Name and your.email@example.com with your

actual information.

gpg --batch --gen-key <(echo '%no-

protection\n%transient-key\nKey-Type:

Ed25519\nName-Real: Your Name\nName-Email:

your.email@example.com\nExpire-Date:

0\n%commit\n')

Listing Keys:

These commands display the keys in your keyring. Public

keys are used to encrypt messages to you, while secret

keys are used to decrypt messages and sign documents.

gpg --list-keys # List public keys

gpg --list-secret-keys # List secret keys

gpg -k # Short form for list

public keys

gpg -K # Short form for list

secret keys

Listing Keys with Fingerprints:

Display the fingerprint of a specific key. Very important

for verifying key identity with others.

gpg --fingerprint <KEY_ID>

Exporting and Importing Keys

Exporting Keys:

Exports the key in

binary format.

gpg -o key.gpg -

-export <KEY_ID>

Exporting Keys in ASCII:

Exports the key in an ASCII

armored format, suitable for

sharing via text.

gpg -o key.asc --armor

--export <KEY_ID>

Importing Keys:

Imports keys from a

file.

gpg --import

key.gpg

gpg --import

key.asc

Importing with Merge-Only

Option:

Only updates existing keys in

your keyring, ignoring new

keys.

gpg --import key.asc --

import-options merge-

only

Exporting Secret Key:

Exports the secret key

(keep this secure!).

Add --armor for

ASCII format.

gpg -o secret-

key.gpg --

export-secret-

key <KEY_ID>

Considerations for Secret Key

Export:

Security: Treat the

exported secret key with

extreme care.

Backup: Export for backup

purposes, storing it

securely offline.

Transfer: Use secure

methods (e.g., encrypted

storage) if transferring the

secret key.

Key Servers

Importing Keys from a Keyserver:

Downloads keys from a keyserver.

gpg --receive-keys <KEY_IDS>

Uploading Keys to a Keyserver:

Uploads your public key to a keyserver.

gpg --send-keys <KEY_IDS>

Refreshing Keys from a Keyserver:

Updates keys in your keyring from a keyserver.

gpg --refresh-keys

Searching for Keys on a Keyserver:

Searches for keys on a keyserver.

gpg --search-keys "<SEARCH STRING>"

Specifying a Keyserver:

Overrides the default keyserver. Add to

~/.gnupg/gpg.conf for persistent configuration.

gpg --keyserver <URL> ...

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/862-gnupg-gpg-cheatsheet
http://cheatsheetshero.com/user/all/862-gnupg-gpg-cheatsheet
http://cheatsheetshero.com/user/all/862-gnupg-gpg-cheatsheet
https://cheatsheetshero.com/

Signing and Verification

Advanced Usage and Troubleshooting

Public Key Encryption

Encrypting a File:

Encrypts secret.txt for the specified recipient,

creating secret.txt.gpg .

gpg -e -o secret.txt.gpg -r <RECIPIENT>

secret.txt

Specifying Recipient Options:

Use key ID, name, or email to specify the recipient.

gpg -e -r <KEY_ID> ...

gpg -e -r "Bez" ...

gpg -e -r "bezalelhermoso@gmail.com" ...

Encrypting for Multiple Recipients:

Encrypts the file so that multiple recipients can decrypt it.

gpg -e -r <RECIPIENT> -r <ANOTHER_RECIPIENT>

... secret.txt

Important Notes:

Omitting -o|--output creates

<ORIGINAL_FILENAME>.gpg .

Public key encryption requires the recipient’s public

key.

Symmetric Encryption

Encrypting with a Shared Key:

Encrypts the file using a passphrase, prompting for it

during encryption. Anyone with the passphrase can

decrypt the file.

gpg --symmetric secret.txt

or

gpg -c secret.txt

Decryption

Decrypting a File:

Decrypts secret.txt.gpg into secret.txt .

gpg -d -o secret.txt secret.txt.gpg

Decrypting to Standard Output:

Prints the decrypted content to standard output

(terminal).

gpg -d secret.txt.gpg

Passphrase Prompt:

For symmetric encryption, you’ll be prompted for the

passphrase.

Important Notes:

Omitting -o|--output prints the output to stdout.

Signing Files

Creating a Detached Signature:

Creates a detached signature file (file.txt.sig) for file.txt .

gpg -o file.txt.sig -b file.txt

Creating an Integrated Signature:

Creates an integrated signature, resulting in a binary file (signed-file.txt.gpg).

gpg -o signed-file.txt.gpg -s file.txt

Signing and Encrypting:

Signs the file while encrypting it.

gpg -s -o secret.txt.gpg -r <RECIPIENT> secret.txt

Clearsigning a File:

Creates a human-readable signature embedded within the file (creates file.txt.asc).

gpg --clearsign file.txt

Verifying Signatures

Verifying a Detached Signature:

Verifies the signature file (file.txt.sig) against the original file (file.txt).

gpg --verify file.txt.sig file.txt

Verifying an Integrated Signature:

Verifies an integrated signature.

gpg --verify signed-file.txt.gpg

Verifying a Clearsigned File:

Verifies a clearsigned file.

gpg --verify file.txt.asc

Viewing Content of Signed File:

Decrypts and displays the content of a signed file.

gpg -d signed-file.txt.gpg

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Trusting Keys

Trusting a Key Interactively:

In the interactive prompt:

Sets the level of trust you have in a key. This helps GPG

decide if signatures from this key are valid.

gpg --edit-key <KEY_ID>

gpg> trust

gpg> save

Using Email/Name instead of Key ID:

You can often use the owner’s email or name (or part

thereof) instead of the key ID for --edit-key .

Trust levels:

1: I don’t know or won’t say

2: I do NOT trust

3: I trust marginally

4: I trust fully

5: I trust ultimately

Managing GPG Components

Listing Components:

Lists all GPG components.

gpgconf --list-components

Killing a Component:

Kills a specific component (e.g., gpgconf --kill

dirmngr).

gpgconf --kill <COMPONENT>

Killing All Components:

Kills all running GPG components.

gpgconf --kill all

Restarting GPG Agent:

Restarts the GPG agent, which manages secret keys.

gpgconf --launch gpg-agent

Parsing Keyring Data

Using Colon-Separated Output:

Produces output that is easily parsed with tools like awk

and grep .

gpg -k --with-colons

Quick Reference for Fields:

Refer to the GnuPG documentation for detailed

explanations of each field. Common fields include Record

Type, Validity, Key Length, Key ID, Creation Date, and

User ID.

Troubleshooting

“No secret key” error:

Ensure the correct secret key is present in your keyring

and that the GPG agent is running.

Signature verification failed:

Verify that you have the correct public key for the signer

and that the original file hasn’t been altered.

GPG agent issues:

Try restarting the GPG agent using gpgconf --kill

gpg-agent followed by gpgconf --launch gpg-agent .

Keyserver errors:

Try a different keyserver or check your network

connection.

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

