
Microcontrollers & SBCs Cheatsheet
A quick reference guide to microcontrollers and single-board computers (SBCs), covering essential terminology, architectures, popular platforms,

and key considerations for selection and use.

Fundamentals

Popular Platforms

Definitions

Microcontroller

(MCU)

A self-contained system-on-a-chip

that includes a processor core,

memory, and programmable

input/output peripherals. Designed

for embedded applications.

Single-Board

Computer (SBC)

A complete computer built on a

single circuit board, typically

including a microprocessor, memory,

I/O, and other features required for a

functional computer. Often runs a full

operating system.

Embedded

System

A specialized computer system

designed to perform a dedicated

function, often with real-time

constraints. Microcontrollers are

commonly used in embedded

systems.

SoC System on Chip, integrates all

components of a computer or other

electronic system into a single

integrated circuit.

GPIO General Purpose Input/Output pins.

Configurable pins on a

microcontroller or SBC that can be

used for digital input or output.

UART Universal Asynchronous

Receiver/Transmitter. A serial

communication protocol.

Key Differences

Processing

Power

SBCs generally have significantly more

processing power than microcontrollers,

featuring faster processors and more

memory.

Operating

System

SBCs typically run a full operating

system (e.g., Linux, Windows IoT), while

microcontrollers often use real-time

operating systems (RTOS) or run bare-

metal code.

Complexity SBCs are more complex to set up and

manage due to the OS and software

dependencies. Microcontrollers are

simpler for basic tasks.

Power

Consumption

Microcontrollers generally consume less

power than SBCs, making them suitable

for battery-powered applications.

Cost Microcontrollers are usually cheaper

than SBCs, especially for high-volume

production.

Use Cases Microcontrollers are suited for

dedicated tasks like controlling sensors

and actuators. SBCs are better for

applications requiring complex

processing, networking, or user

interfaces.

Architectures

RISC (Reduced

Instruction Set

Computing)

Emphasizes simplified instruction

sets, leading to faster execution and

lower power consumption. ARM

architecture is a prominent example.

CISC (Complex

Instruction Set

Computing)

Features a more extensive set of

instructions, allowing for more

complex operations. x86

architecture is a common example

(used in many SBCs).

ARM A widely used RISC architecture,

particularly in microcontrollers and

mobile devices. Known for its energy

efficiency and versatility.

x86 A CISC architecture commonly

found in desktop and laptop

computers. Also used in some

higher-end SBCs.

Harvard

Architecture

Separate memory spaces for

instructions and data, enabling

simultaneous access and faster

execution.

Von Neumann

Architecture

Single memory space for both

instructions and data, simpler but

may lead to performance

bottlenecks.

Microcontroller Platforms

Arduino An open-source electronics platform

based on easy-to-use hardware and

software. Ideal for beginners and

rapid prototyping. Uses AVR

microcontrollers.

ESP32 A low-cost, low-power system-on-a-

chip (SoC) series with Wi-Fi and

Bluetooth capabilities. Popular for IoT

applications.

STM32 A family of 32-bit microcontrollers

based on the ARM Cortex-M core.

Known for their performance and

versatility.

PIC

Microcontrollers

A family of microcontrollers from

Microchip Technology, widely used in

embedded systems due to their low

cost and ease of programming.

Teensy A line of microcontroller boards

designed for hobbyists and

developers, offering a balance of

performance, size, and ease of use.

AVR A family of microcontrollers

developed by Atmel (now Microchip

Technology), commonly used in

Arduino boards and other embedded

applications.

Single-Board Computer Platforms

Raspberry

Pi

A series of small, affordable SBCs widely

used for education, hobbyist projects, and

industrial applications. Runs Linux-based

operating systems.

NVIDIA

Jetson

A family of SBCs designed for AI and

machine learning applications, featuring

powerful GPUs and optimized software

libraries.

BeagleBone A series of open-source SBCs known for

their flexibility and extensive I/O

capabilities. Often used in industrial

automation and robotics.

ODROID A line of SBCs offering a range of

performance options and features,

suitable for various applications including

gaming, media centers, and embedded

systems.

Intel NUC A small form factor computer that can be

used as a single board computer

alternative with more processing power.

Usually runs Windows or Linux.

Rock Pi A high-performance single board

computer offering excellent performance

and rich interfaces.

Comparison Table

Feature Arduino Uno Raspberry Pi 4 ESP32

Processor AVR ARM Cortex-

A72

Dual-core

ESP32

Clock

Speed

16 MHz 1.5 GHz 240 MHz

Memory 2 KB SRAM 1-8 GB RAM 520 KB

SRAM

Operating

System

None Linux RTOS/None

Use Case Simple tasks Complex apps IoT

Cost Low Medium Low

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/830-microcontrollers-sbcs-cheatsheet
http://cheatsheetshero.com/user/all/830-microcontrollers-sbcs-cheatsheet
http://cheatsheetshero.com/user/all/830-microcontrollers-sbcs-cheatsheet
https://cheatsheetshero.com/

Selection Criteria

Programming Languages

Performance Requirements

Consider the processing power, memory, and clock speed

required for your application. SBCs are preferable for

computationally intensive tasks, while microcontrollers

are sufficient for simpler control applications.

Evaluate the need for real-time processing.

Microcontrollers often excel in real-time applications due

to their deterministic behavior.

Assess the complexity of algorithms and data processing

involved. SBCs are better suited for complex algorithms

and large datasets.

I/O and Connectivity

Determine the number and type of I/O interfaces required

(e.g., GPIO, UART, SPI, I2C, USB). Microcontrollers offer a

wide range of I/O options, while SBCs provide more

connectivity options like Ethernet and HDMI.

Consider the need for wireless connectivity (e.g., Wi-Fi,

Bluetooth, Cellular). Some microcontrollers and SBCs

come with integrated wireless modules.

Evaluate the need for analog input and output capabilities

(ADC/DAC). Microcontrollers are commonly used for

analog sensor interfacing.

Power Consumption

For battery-powered applications, prioritize low power

consumption. Microcontrollers generally consume less

power than SBCs.

Consider power management features such as sleep

modes and voltage scaling. These features can help

minimize power consumption when the device is idle.

Evaluate the power requirements of peripherals and

external components. Choose components that are

energy-efficient.

Software and Development Environment

Consider the availability of software libraries,

development tools, and community support. Arduino and

Raspberry Pi have large communities and extensive

resources.

Evaluate the ease of programming and debugging. Some

platforms offer user-friendly IDEs and debugging tools.

Consider the operating system requirements. SBCs

typically run Linux, while microcontrollers often use RTOS

or bare-metal programming.

Languages for Microcontrollers

C/C++ The most common languages for

microcontroller programming. They

provide low-level control and efficient

memory usage.

Assembly

Language

Provides the most direct control over

the hardware, but is more complex

and time-consuming to write. Used

for performance-critical sections of

code.

MicroPython A lean and efficient implementation

of the Python 3 programming

language that is optimized to run on

microcontrollers.

Arduino

Programming

Language

A simplified dialect of C++ designed

for use with the Arduino IDE. Makes

microcontroller programming more

accessible.

Languages for SBCs

Python A high-level, general-purpose programming

language that is widely used on SBCs due

to its readability and extensive libraries.

C/C++ Also used on SBCs, especially for

performance-critical applications and

system-level programming.

Java A platform-independent language

commonly used for developing applications

on SBCs, particularly in enterprise

environments.

JavaScript Used for web development and Node.js

applications on SBCs. Useful for creating

user interfaces and network services.

Debugging Tips

Use a debugger: Tools like GDB or platform-specific

debuggers can help step through code and inspect

variables.

Print statements: Insert print statements (e.g.,

printf in C/C++, print in Python) to trace

program execution and check variable values.

Logic analyzers: Use a logic analyzer to monitor

digital signals and identify timing issues.

Oscilloscopes: Use an oscilloscope to visualize

analog signals and diagnose signal integrity

problems.

Serial communication: Use serial communication to

output debugging information from the

microcontroller or SBC.

LEDs: Use LEDs as visual indicators to signal specific

events or states in the program.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

