
Next.js Cheat Sheet
A concise cheat sheet covering essential Next.js concepts, commands, and best practices for building efficient and scalable React applications.

Getting Started & Basic Concepts

Routing & Navigation

Data Fetching

Project Setup

Create a new Next.js app:

npx create-next-app@latest my-nextjs-app

cd my-nextjs-app

Start the development server:

npm run dev

or

yarn dev

or

pnpm dev

or

bun dev

Build for production:

npm run build

or

yarn build

or

pnpm build

or

bun build

Start the production server:

npm run start

or

yarn start

or

pnpm start

or

bun start

Key Concepts

Pages Files in the pages directory become

routes based on their filename. For

example, pages/about.js becomes

/about .

Components Reusable pieces of UI. Can be functional

components or class components.

Layouts Components that wrap pages to provide

a consistent UI structure across different

routes. Often implemented using a

_app.js file or layout components.

API Routes Serverless functions defined in

pages/api for handling backend logic

directly within your Next.js application.

File Structure

pages/ - Contains React components that are

automatically converted into routes.

public/ - For static assets like images, fonts, etc.

components/ - (Optional) A common place to store

React components.

styles/ - For CSS modules, global stylesheets, etc.

_app.js - Custom app component for initializing pages.

Can be used for layouts, global styles, and more.

_document.js - Custom document for controlling the

<html> tag. Advanced usage.

Basic Routing

Files in the pages directory automatically become

routes.

pages/index.js -> / (the homepage)

pages/about.js -> /about

pages/blog/index.js -> /blog

pages/blog/[id].js -> /blog/:id (dynamic route)

Link Component

Import
import Link from 'next/link';

Usage
<Link href="/about">

 <a>About Us

</Link>

Prefetching The Link component automatically

prefetches pages in the background for

faster navigation. It makes the page faster

when you click the link.

Dynamic Routes

Use bracket syntax [] to create dynamic routes. For

example, pages/posts/[id].js will handle routes like

/posts/1 , /posts/2 , etc.

Access the route parameters using the useRouter hook:

import { useRouter } from 'next/router';

function Post() {

 const router = useRouter();

 const { id } = router.query;

 return <p>Post: {id}</p>;

}

useRouter Hook

Import
import { useRouter } from

'next/router';

Properties router.pathname : The path of the current

page.

router.query : An object containing the

query parameters.

router.asPath : The path in the browser

(including the query parameters).

router.push(url, as, options) :

Programmatically navigate to a new page.

router.replace(url, as, options) :

Programmatically replace the current route

in the history stack.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/828-next-js-cheat-sheet
http://cheatsheetshero.com/user/all/828-next-js-cheat-sheet
http://cheatsheetshero.com/user/all/828-next-js-cheat-sheet
https://cheatsheetshero.com/

API Routes and Middleware

Data Fetching Methods

Next.js provides several data fetching methods for

different use cases:

getStaticProps : Fetch data at build time.

getServerSideProps : Fetch data on each request.

getStaticPaths : Specify dynamic routes to pre-

render based on data.

getStaticProps

Description Fetches data at build time. Ideal for

content that doesn’t change frequently

(e.g., blog posts, marketing pages).

Usage
export async function

getStaticProps(context) {

 const data = await fetchData();

 return {

 props: { data }, // will be

passed to the page component as

props

 revalidate: 10, // Optional:

Refetch data every 10 seconds

 };

}

When to

Use

Use when you can pre-render the page at

build time based on the data.

getServerSideProps

Description Fetches data on each request. Use for data

that changes frequently or requires

authentication.

Usage
export async function

getServerSideProps(context) {

 const data = await

fetchData(context.req,

context.res);

 return {

 props: { data }, // will be

passed to the page component as

props

 };

}

When to

Use

Use when you need to fetch data on every

request, such as when you have user-

specific data or data that updates very

frequently.

getStaticPaths

Description Specifies which dynamic routes to pre-

render at build time. Required for dynamic

routes when using getStaticProps .

Usage
export async function

getStaticPaths() {

 const paths = await

getAllPostIds();

 return {

 paths,

 fallback: false, // or

'blocking' or true

 };

}

Fallback

Options

fallback: false : Any paths not

returned by getStaticPaths will result

in a 404 page.

fallback: true : Next.js will serve a

static page with a loading indicator. After

the page is generated, it will be cached

and served for future requests.

fallback: 'blocking' : The user will

wait for the page to be generated; Next.js

will server the complete page for future

requests.

API Route Basics

Create API endpoints by creating files in the pages/api

directory.

API routes are server-side only and won’t increase your

client-side bundle size.

pages/api/hello.js

API Route Handler

Example
export default function

handler(req, res) {

 res.status(200).json({ name:

'John Doe' });

}

Request

Object

(req)

Contains information about the

incoming request, such as headers,

query parameters, and body.

Response

Object

(res)

Used to send a response back to the

client. Includes methods like

res.status() , res.json() ,

res.send() , etc.

Middleware

Next.js 13+ introduced Middleware to run code before a

request is completed. You can rewrite, redirect, add

headers, or even block requests based on the incoming

request.

Create a middleware.js or middleware.ts file in the

root directory.

Middleware Example

Example
import { NextResponse } from

'next/server'

import type { NextRequest } from

'next/server'

export function middleware(request:

NextRequest) {

 if

(request.nextUrl.pathname.startsWith

('/admin')) {

 return NextResponse.rewrite(new

URL('/login', request.url))

 }

}

export const config = {

 matcher: ['/about/:path*',

'/dashboard/:path*'],

}

Matcher The matcher config defines on which paths

the middleware should run.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

