
POSIX Shell Scripting Cheatsheet
A quick reference guide to POSIX shell scripting, covering syntax, commands, and best practices for writing portable and robust shell scripts.

Basic Syntax & Structure

Control Structures

Commands and Utilities

Script Structure

#!/bin/sh - Shebang line, specifies the interpreter.

This line should be the first line of the script. It tells the

system which interpreter to use to execute the script.

Using /bin/sh ensures POSIX compliance.

Comment - Comments start with a # .

Comments are used to explain the code and are ignored

by the interpreter.

Commands are executed sequentially, one per line.

Each line typically contains a single command or a control

structure.

Semicolons (;) can separate multiple commands on a

single line.

Example:

command1; command2

Use exit n to exit the script with status n .

A status of 0 usually indicates success, while a non-zero

status indicates failure.

Variables

Variable

Assignment

variable=value (No spaces

around =).

Example:

name="John Doe"

Variable Access $variable or ${variable}

(safer).

Example:

echo "Hello, $name!"

Read-only

Variables

readonly variable

Example:

readonly name

Unsetting

Variables

unset variable

Example:

unset name

Special Variables $0: Script name

$1, $2, …: Arguments

$#: Number of arguments

$?: Exit status of last command

$$: Process ID

$!: PID of last background command

Input and Output

echo message - Prints a message to standard output.

Example:

echo "Hello, world!"

read variable - Reads input from standard input and

assigns it to a variable.

Example:

read name

cat filename - Displays the content of a file.

Example:

cat myfile.txt

printf format arguments - Formatted output (like C’s

printf).

Example:

printf "Name: %s, Age: %d\n" "John" 30

Conditional Statements (if/then/else/fi)

if condition; then commands [elif condition; then

commands] [else commands] fi

Example:

if ["$name" = "John"]; then

 echo "Hello, John!"

else

 echo "Hello, stranger!"

fi

Conditions are often enclosed in square brackets [] .

Note the spaces around the brackets and the condition.

Example:

[-f "myfile.txt"] (checks if the file exists)

String comparison: = (equal), != (not equal)

Integer comparison: -eq (equal), -ne (not equal), -

lt (less than), -le (less than or equal), -gt (greater

than), -ge (greater than or equal)

File tests: -f (file exists), -d (directory exists), -r

(readable), -w (writable), -x (executable)

Looping (for/while/until)

for variable in word1 word2 ...; do commands

done

Example:

for i in 1 2 3; do

 echo "Number: $i"

done

while condition; do commands done

Example:

i=1

while [$i -le 3]; do

 echo "Number: $i"

 i=$((i + 1))

done

until condition; do commands done

Example:

i=1

until [$i -gt 3]; do

 echo "Number: $i"

 i=$((i + 1))

done

break - Exits the loop.

continue - Skips the current iteration.

Case Statements

case variable in pattern1) commands ;; pattern2)

commands ;; *) commands ;; esac

Example:

case "$1" in

 start) echo "Starting service" ;;

 stop) echo "Stopping service" ;;

 *) echo "Usage: $0 {start|stop}" ;;

esac

The *) pattern is the default case, similar to default

in other languages.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/819-posix-shell-scripting-cheatsheet
http://cheatsheetshero.com/user/all/819-posix-shell-scripting-cheatsheet
http://cheatsheetshero.com/user/all/819-posix-shell-scripting-cheatsheet
https://cheatsheetshero.com/

Functions and Advanced Features

File Manipulation

ls List directory contents

mkdir directory Create a directory

rm file Remove a file

rmdir directory Remove an empty directory

cp source

destination

Copy a file

mv source

destination

Move or rename a file

touch file Create an empty file or update its

timestamp

Text Processing

grep pattern file Search for a pattern in a file

sed 's/old/new/g'

file

Replace text in a file

awk '{print $1}'

file

Print the first field of each line

in a file

sort file Sort the lines in a file

uniq file Remove duplicate lines from a

file

cut -d',' -f1

file

Cut out sections of each line of

a file

Process Control

ps List running processes

kill pid Terminate a process

sleep

seconds

Pause execution for a specified number

of seconds

command & Run a command in the background

wait Wait for all background processes to

complete

Functions

function_name() { commands } or function

function_name { commands }

Example:

my_function() {

 echo "Hello from my_function!"

}

my_function # Call the function

Functions can accept arguments: $1 , $2 , etc.

Example:

greet() {

 echo "Hello, $1!"

}

greet "John"

return value - Returns a value from the function. The

value should be between 0 and 255.

Local variables can be declared using local .

Example:

my_function() {

 local my_var="local value"

 echo $my_var

}

Command Substitution

$(command) or command (deprecated) - Executes a

command and substitutes its output.

Example:

date_str=$(date +%Y-%m-%d)

echo "Today is $date_str"

Here Documents

<<DELIMITER text DELIMITER - Redirects multiple lines

of input to a command.

Example:

cat <<EOF

Hello, this is a multi-line string.

EOF

Signal Handling

trap 'command' SIGNAL - Executes a command when a

signal is received.

Example:

trap 'echo "Exiting..." ; exit 1' SIGINT

Common signals: SIGINT (Ctrl+C), SIGTERM

(termination signal), SIGKILL (kill signal, cannot be

trapped).

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

