
Nomad Cheatsheet
A quick reference guide for HashiCorp Nomad, covering essential commands, concepts, and configurations for job scheduling and cluster

management.

Nomad Basics

Job Specification Details

Advanced Features

Core Concepts

Client: Executes tasks on behalf of Nomad.

Server: Manages the cluster state, schedules jobs, and

handles client communication.

Job: A declaration of tasks to be run and their

requirements.

Task: A single unit of work within a job.

Allocation: A mapping of a task to a specific client.

Driver: Responsible for executing tasks. Examples include

docker , java , exec , raw_exec .

Nomad CLI Commands

nomad job run

<jobfile.nomad>

Submit a job to Nomad.

nomad job status

<job_id>

Check the status of a job.

nomad job stop

<job_id>

Stop a running job.

nomad node status Show status of all the nodes.

nomad alloc status

<alloc_id>

Show status of the allocation

nomad status Displays the overall Nomad

cluster status.

Basic Job File Structure

job "example" {

 datacenters = ["dc1"]

 type = "service"

group "web" {

 count = 3

task "server" {

 driver = "docker"

 config {

 image = "nginx:latest"

 port_map {

 http = 80

 }

 }

 resources {

 cpu = 500

 memory = 256

 network {

 mbits = 10

 port "http" {}

 }

 }

 }

 }

}

Job Block

job

"job_name"

{}

Defines the job. Must be unique within

the datacenter.

datacenters

= ["dc1"]

Specifies the datacenters where the job

can run.

type =

"service"

Job type. Can be service (long-

running) or batch (finite).

priority =

50

Specifies job priority. Higher number

means higher priority. Default is 50.

update {} Controls the job update strategy.

Group Block

group

"group_name"

{}

Groups tasks together for scaling

and placement.

count = 3 Number of task instances to run in

this group.

restart {} Defines restart policy for tasks in the

group.

ephemeral_disk

{}

Configures an ephemeral disk for

tasks in the group.

constraint {} Defines constraints for task

placement.

Task Block

task

"task_name"

{}

Defines a single unit of work to be

executed.

driver =

"docker"

Specifies the task driver to use (e.g.,

docker, exec).

config {} Driver-specific configuration (e.g.,

Docker image, command).

resources

{}

Specifies resource requirements (CPU,

memory, network).

service {} Defines how the task should be

registered as a service.

template

{}

Configures dynamic templates using

Consul or Vault data.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/813-nomad-cheatsheet
http://cheatsheetshero.com/user/all/813-nomad-cheatsheet
http://cheatsheetshero.com/user/all/813-nomad-cheatsheet
https://cheatsheetshero.com/

Networking and Service Discovery

Constraints

Constraints ensure that tasks are placed on suitable

clients based on attributes.

Example:

constraint {

 attribute = "${node.class}"

 operator = "=="

 value = "web"

}

Common attributes: node.class , node.datacenter ,

driver.docker .

Update Strategy

update {} Controls how jobs are updated (rolling

updates, canary deployments).

max_parallel

= 1

Maximum number of allocations that

can be updated concurrently.

stagger =

"10s"

Delay between updating allocations.

min_healthy_

time = "30s"

Minimum time an allocation must be

healthy before continuing.

auto_revert

= true

Automatically revert to the previous

version if the update fails.

Templates

Templates allow dynamic configuration based on Consul

or Vault data.

Example:

template {

 data = <<EOH

 {{ with secret "secret/data/mydb" }}

 DATABASE_PASSWORD={{ .Data.password }}

 {{ end }}

 EOH

destination = "secrets.env"

 perms = "0644"

}

Networking

network {} Configures the network resources

for a task.

port "http" {

static = 8080 }

Defines a static port mapping.

port "http" {} Defines a dynamic port mapping,

assigned by Nomad.

mbits = 10 Configures network bandwidth in

megabits per second.

Service Discovery with Consul

Nomad integrates with Consul for service discovery.

Example:

service {

 name = "web"

 tags = ["v1"]

 port = "http"

 check {

 type = "http"

 path = "/health"

 interval = "10s"

 timeout = "5s"

 }

}

This registers the task with Consul, including health

checks.

Vault Integration

Nomad can retrieve secrets from Vault for secure

configuration.

Example:

template {

 data = <<EOH

 {{ with secret "secret/data/mydb" }}

 DATABASE_PASSWORD={{ .Data.password }}

 {{ end }}

 EOH

destination = "secrets.env"

 perms = "0644"

}

Ensure that the Nomad client has appropriate Vault

policies.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

