
GitLab Cheat Sheet
A comprehensive cheat sheet for using GitLab, covering essential commands, features, and workflows for version control and collaboration.

GitLab Basics

Merge Requests & Code Review

GitLab CI/CD

Core Concepts

Repository: A centralized storage location for code, files,

and version history.

Branch: An independent line of development, allowing for

parallel work and feature isolation.

Merge Request (MR): A proposal to merge changes from

one branch into another. It includes code review,

discussions, and automated checks.

Pipeline: An automated workflow that defines the steps

required to build, test, and deploy code.

CI/CD: Continuous Integration and Continuous

Delivery/Deployment. A set of practices to automate the

software release process.

GitLab Workflow

1. Create a Branch: Start a new feature or bug fix by

creating a branch from the main branch.

2. Develop and Commit: Make changes on your branch

and commit them with descriptive messages.

3. Push to GitLab: Push your branch to the remote

GitLab repository.

4. Create a Merge Request: Open a merge request to

propose your changes to the main branch.

5. Review and Discuss: Collaborate with reviewers to

address feedback and improve the code.

6. Run pipelines: Configure CI/CD pipelines to validate

changes before merging.

7. Merge: Once approved, merge the changes into the

main branch.

Basic Git Commands

`git clone ` Clone a repository from GitLab to your

local machine.

`git checkout

-b `

Create and switch to a new branch.

`git add .` Stage all changes for commit.

`git commit -

m ""`

Commit staged changes with a

descriptive message.

`git push

origin `

Push the local branch to the remote

GitLab repository.

`git pull origin

`

Pull the latest changes from the remote

branch to your local branch.

Creating Merge Requests

1. Push your branch: After committing changes locally,

push your branch to the remote GitLab repository

using git push origin <branch_name> .

2. Navigate to GitLab: Go to your project on GitLab

and you should see a prompt to create a merge

request for your recently pushed branch.

3. Fill in details: Provide a title and description for your

merge request. Explain the changes you’ve made and

why they are necessary.

4. Assign reviewers: Choose one or more reviewers to

review your code. Consider assigning individuals

with expertise in the affected areas.

5. Submit the merge request: Once you’ve filled in all

the necessary details, submit the merge request.

Code Review Process

1. Receive notification: Reviewers will receive a

notification about the new merge request.

2. Review the code: Reviewers should carefully

examine the changes, looking for potential bugs,

security vulnerabilities, and adherence to coding

standards.

3. Provide feedback: Use GitLab’s commenting

features to provide feedback directly on the code.

Be clear and constructive in your comments.

4. Iterate and improve: The author should address the

feedback and make necessary changes. Push the

updated code to the branch, which will automatically

update the merge request.

5. Approve or request changes: Once the reviewers are

satisfied with the changes, they can approve the

merge request. If further changes are needed, they

can request them.

Merge Request Commands

`git fetch

origin `

Fetch the remote branch to your local

machine.

`git merge

origin/`

Merge the remote branch into your current

branch (after fetching).

`git rebase

origin/`

Rebase your current branch onto the

remote branch (alternative to merging).

CI/CD Pipeline Configuration

GitLab CI/CD is configured using a .gitlab-ci.yml file

at the root of your repository. This file defines the stages,

jobs, and scripts that make up your pipeline.

Stages: Define the order in which jobs are executed (e.g.,

build, test, deploy).

Jobs: Define the tasks to be performed in each stage

(e.g., compiling code, running tests, deploying to a server).

Scripts: Define the commands to be executed within each

job.

Variables: Define environment variables that can be used

in your scripts.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/806-gitlab-cheat-sheet
http://cheatsheetshero.com/user/all/806-gitlab-cheat-sheet
http://cheatsheetshero.com/user/all/806-gitlab-cheat-sheet
https://cheatsheetshero.com/

GitLab Advanced Features

Example .gitlab-ci.yml

```yaml

stages:

- build

- test

- deploy

build_job:

stage: build

script:

- echo "Building..."

- ./build.sh

test_job:

stage: test

script:

- echo "Testing..."

- ./test.sh

deploy_job:

stage: deploy

script:

- echo "Deploying..."

- ./deploy.sh

only:

- main

```

CI/CD Variables

`CI_COMMIT_BRANCH` The branch or tag name for

which the pipeline is running.

`CI_COMMIT_SHA` The commit SHA for which the

pipeline is running.

`CI_PROJECT_ID` The ID of the GitLab project.

`CI_PROJECT_NAME` The name of the GitLab

project.

`CI_PIPELINE_ID` The ID of the current pipeline.

GitLab Pages

GitLab Pages allows you to host static websites directly

from your GitLab repository. You can use it to create

personal or project websites, documentation, or blogs.

To set up GitLab Pages, you need to create a .gitlab-

ci.yml file that builds your website and publishes it to

the public directory.

GitLab will automatically deploy your website to a GitLab

Pages domain (e.g., username.gitlab.io/projectname).

GitLab Issues

GitLab Issues are used to track bugs, feature requests,

and other tasks related to your project. They provide a

central place to discuss and manage work.

You can assign issues to team members, set milestones,

add labels, and track progress.

Issues can be linked to merge requests to track the code

changes that address them.

GitLab Security

GitLab provides various security features to help you

identify and address vulnerabilities in your code.

Static Application Security Testing (SAST): Analyzes

your source code for potential vulnerabilities.

Dynamic Application Security Testing (DAST): Tests your

running application for vulnerabilities.

Dependency Scanning: Identifies vulnerabilities in your

project’s dependencies.

Container Scanning: Scans your Docker images for

vulnerabilities.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

