
Event-Driven Architecture Cheatsheet
A quick reference guide to Event-Driven Architecture (EDA) principles, patterns, and technologies. Covers key concepts, benefits, and practical

implementation details.

Core Concepts

Common Patterns

Technology Stack

Implementation Considerations

Fundamental Principles

Events: Significant state changes or occurrences within a

system.

Producers: Services that emit events. They don’t need to

know who consumes them.

Consumers: Services that subscribe to and process

events. They are decoupled from producers.

Event Router/Broker: An intermediary that receives

events from producers and routes them to appropriate

consumers (e.g., Kafka, RabbitMQ).

Asynchronous Communication: Producers and

consumers operate independently and don’t wait for

direct responses.

Key Benefits

Decoupling Services operate independently,

reducing dependencies and improving

resilience.

Scalability Individual services can be scaled

independently based on their event

processing needs.

Flexibility New services can be added to consume

existing events without modifying

producers.

Real-time

Processing

Enables immediate reaction to events,

supporting real-time analytics and

decision-making.

Event Types

Event Notification: Simple notification about a state

change. Consumers typically fetch related data.

Example: OrderCreated

Event-Carried State Transfer: Event contains the data

needed by consumers.

Example: OrderCreated  event includes order details.

Event-Carried Change Notification: Event contains the

changed data.

Example: OrderUpdated  event includes only updated

fields.

Event Sourcing

Capturing all changes to an application’s state as a

sequence of events. The current state can be

reconstructed by replaying the events.

Benefits: Auditability, temporal queries, easier debugging.

Considerations: Event storage, replay mechanisms,

eventual consistency.

CQRS (Command Query Responsibility

Segregation)

Separating read and write operations. Write operations

(Commands) result in events that update read models

(Queries).

Benefits: Optimized read and write performance,

simplified data models.

Considerations: Eventual consistency, complexity in

managing separate models.

Saga Pattern

Managing distributed transactions by breaking them into

a sequence of local transactions. Each local transaction

publishes an event to trigger the next transaction in the

saga.

Compensation Transactions: If one transaction fails, a

series of compensating transactions are executed to undo

the previous transactions.

Types: Choreography-based (implicit coordination) and

Orchestration-based (explicit coordination).

Message Brokers

Apache

Kafka

High-throughput, fault-tolerant,

distributed streaming platform. Suitable

for large-scale event processing and data

pipelines.

RabbitMQ Versatile message broker that supports

multiple messaging protocols. Good for

complex routing and guaranteed delivery.

Amazon

SNS/SQS

Cloud-based messaging services. SNS for

pub/sub and SQS for message queues.

Highly scalable and managed.

Event Processing Frameworks

Apache Flink Distributed stream processing engine for

stateful computations over unbounded

data streams. Suitable for real-time

analytics and complex event processing.

Apache

Spark

Streaming

Extension of Spark for processing real-

time data streams. Supports micro-

batching approach.

Spring Cloud

Stream

Framework for building message-driven

microservices. Provides abstractions for

connecting to different message brokers.

Data Storage

Event Store: Database optimized for storing event

streams. Examples: EventStoreDB, AxonDB.

NoSQL Databases: MongoDB, Cassandra, etc. Suitable for

storing denormalized read models in CQRS.

Relational Databases: PostgreSQL, MySQL, etc. Can be

used for read models, but may require careful

optimization.

Consistency

Eventual Consistency: Data may not be immediately

consistent across all services. Requires careful handling of

race conditions and conflicts.

Idempotency: Consumers should be able to process the

same event multiple times without side effects.

Exactly-Once Semantics: Ensuring that each event is

processed exactly once. Difficult to achieve in distributed

systems. Often approximated with at-least-once delivery

and idempotency.

Error Handling

Dead Letter Queues (DLQ): Events that cannot be

processed are sent to a DLQ for further investigation.

Retry Mechanisms: Implement retry policies for transient

errors. Use exponential backoff to avoid overwhelming

the system.

Circuit Breakers: Prevent cascading failures by

temporarily stopping event processing when a service is

unavailable.

Monitoring and Observability

Event Tracking: Monitor event flow and processing

latency.

Correlation IDs: Include a correlation ID in each event to

track it across different services.

Metrics and Logging: Collect metrics about event

processing and log errors and warnings.

Page 1 of 1 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/805-event-driven-architecture-cheatsheet
http://cheatsheetshero.com/user/all/805-event-driven-architecture-cheatsheet
http://cheatsheetshero.com/user/all/805-event-driven-architecture-cheatsheet
https://cheatsheetshero.com/

