
SaltStack Cheat Sheet
A quick reference guide to SaltStack, covering essential commands, configurations, and concepts for efficient task automation and system

management.

Core Concepts & Architecture

Common Salt Commands

Salt States and SLS Files

Key Components

Salt

Master

Central control node that issues

commands and manages

configurations.

Salt

Minion

Agent installed on managed nodes

that executes commands received

from the Salt Master.

Salt

States

Declarative configurations written in

YAML that define the desired state of

a system.

Salt

Modules

Python modules that provide

functions for managing system

resources and services.

Salt

Grains

System properties discovered by the

Minion and reported to the Master

(e.g., OS, architecture).

Salt

Pillars

Secure data store for sensitive

information (e.g., passwords, API

keys) that can be used in States and

Modules.

Communication Flow

1. Master authenticates Minions using

cryptographic keys.

2. Master sends commands and States to

Minions.

3. Minions execute commands and apply

States.

4. Minions return execution results to the

Master.

Configuration Files

Master Configuration: /etc/salt/master

Minion Configuration: /etc/salt/minion

Pillar Data: /srv/pillar

State Files: /srv/salt

Basic Commands

salt '*'

test.ping

Check the connectivity to

all minions.

salt 'minion_id'

test.ping

Check the connectivity to

a specific minion.

salt '*'

state.apply

Apply all states to all

minions.

salt 'minion_id'

state.apply

Apply all states to a

specific minion.

salt '*' cmd.run

'command'

Execute a shell command

on all minions.

salt 'minion_id'

cmd.run

'command'

Execute a shell command

on a specific minion.

Targeting Minions

salt -E '.*' Target all minions using

regular expression.

salt -G

'os:Ubuntu'

test.ping

Target minions with the ‘os’

grain equal to ‘Ubuntu’.

salt -I

'role:webserver

' test.ping

Target minions with the ‘role’

grain equal to ‘webserver’.

salt -L

'minion1,minion

2' test.ping

Target a list of minions.

salt -N 'web*

and db*'

test.ping

Target minions using

compound matching.

State Management

salt '*'

state.highstate

Apply all states defined in

the top file.

salt 'minion_id'

state.sls

'statename'

Apply a specific state to

a minion.

salt '*'

state.show_highsta

te

Show the compiled

highstate for all minions.

salt '*'

state.show_sls

'statename'

Show the compiled state

for a specific SLS file.

salt '*'

state.test

Dry run, show changes

without applying them.

Basic SLS Structure

SLS (Salt State) files are written in YAML and

define the desired state of a system.

/srv/salt/apache.sls

apache:

 pkg.installed:

 - name: httpd

 service.running:

 - name: httpd

 - enable: True

 - require:

 - pkg: apache

Common State Modules

pkg.installed Install a package.

pkg.removed Remove a package.

service.running Ensure a service is running.

service.stopped Ensure a service is stopped.

file.managed Manage a file’s content.

file.absent Ensure a file is absent.

user.present Create a user.

user.absent Remove a user.

State Requisites

requi

re

Ensures a state is executed before the

current state.

requi

re_in

Ensures the current state is executed

before another state.

watc

h

Executes a state when another state

changes.

watch

_in

Another state executes when the

current state changes.

use Includes another state as if its

declarations were part of the current

state.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/797-saltstack-cheat-sheet
http://cheatsheetshero.com/user/all/797-saltstack-cheat-sheet
http://cheatsheetshero.com/user/all/797-saltstack-cheat-sheet
https://cheatsheetshero.com/

Pillars and Grains

Pillar Data

Pillars are used to define sensitive data that

should be available only to certain minions.

/srv/pillar/top.sls

base:

 '*':

 - secrets

/srv/pillar/secrets.sls

password: 'mysecretpassword'

Accessing Pillar Data

In States: {{ pillar['password']

}}

In Jinja Templates: {{ salt['pillar.get']

('password') }}

From the

Command Line:

salt '*' pillar.get

password

Grains

Grains are system properties that are

automatically discovered by the Minion and made

available to the Master.

Examples:

os , os_family , kernel , architecture ,

ip_address

Accessing Grains

In States: {{ grains['os'] }}

In Jinja Templates: {{ salt['grains.get']

('os') }}

From the Command

Line:

salt '*' grains.get

os

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

