
Data Structures Cheatsheet
A quick reference guide to common data structures, their properties, and common use cases. This cheatsheet provides a concise overview for

developers and students.

Arrays and Linked Lists

Stacks and Queues

Trees

Arrays

Definition: Contiguous block of memory

holding elements of the same type.

Access: Random access (O(1)) using index.

Insertion/Deletion: O(n) in the worst case (shifting

elements).

Use Cases: Storing and accessing elements by

index, implementing stacks and

queues.

Memory: Requires contiguous memory; can

lead to fragmentation.

Example:
arr = [1, 2, 3, 4, 5]

print(arr[2]) # Output: 3

Linked Lists

Definition: Collection of nodes, each

containing data and a pointer to the

next node.

Access: Sequential access (O(n)).

Insertion/Deletion: O(1) if the node is known.

Use Cases: Implementing stacks, queues, and

graphs; dynamic memory allocation.

Memory: Non-contiguous memory; more

flexible memory usage.

Example:
class Node:

 def __init__(self,

data):

 self.data = data

 self.next = None

Comparison

Arrays offer faster access but slower insertion/deletion

compared to linked lists. Linked lists use memory more

efficiently in dynamic scenarios.

Arrays require a contiguous block of memory, while linked

lists can be scattered in memory.

Stacks

Definition: LIFO (Last-In, First-Out) data

structure.

Operations: Push (add element), Pop (remove

element), Peek (view top element).

Implementation: Arrays or linked lists.

Use Cases: Function call stack, expression

evaluation, backtracking.

Time

Complexity:

O(1) for push and pop operations.

Example:
stack = []

stack.append(1) # Push

stack.pop() # Pop

Queues

Definition: FIFO (First-In, First-Out) data

structure.

Operations: Enqueue (add element), Dequeue

(remove element).

Implementation: Arrays or linked lists.

Use Cases: Task scheduling, breadth-first search

(BFS).

Time

Complexity:

O(1) for enqueue and dequeue

operations (using linked list or circular

array).

Example:
from collections import deque

queue = deque()

queue.append(1) # Enqueue

queue.popleft() # Dequeue

Comparison

Stacks and queues differ in their ordering principle: LIFO

vs. FIFO. Stacks are used for tasks that require reversing

order, while queues maintain order.

Stacks often manage function calls, while queues handle

task scheduling and processing.

Binary Trees

Definition: Each node has at most two children:

left and right.

Traversal

Methods:

Inorder, Preorder, Postorder.

Use Cases: Expression parsing, decision trees.

Example:
class Node:

 def __init__(self,

data):

 self.data = data

 self.left = None

 self.right = None

Balanced vs

Unbalanced:

Balanced trees have height O(log n),

while unbalanced trees can have

height O(n).

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/790-data-structures-cheatsheet
http://cheatsheetshero.com/user/all/790-data-structures-cheatsheet
http://cheatsheetshero.com/user/all/790-data-structures-cheatsheet
https://cheatsheetshero.com/

Hash Tables

Binary Search Trees (BST)

Definition: Binary tree where for each node, all

nodes in the left subtree are smaller, and

all nodes in the right subtree are larger.

Operations: Search, insert, delete.

Time

Complexity:

O(log n) on average, O(n) in the worst

case (unbalanced tree).

Use Cases: Efficient searching, sorting, and retrieval.

Example:
Insert operation in BST

def insert(root, data):

 if root is None:

 return Node(data)

 else:

 if data < root.data:

 root.left =

insert(root.left, data)

 else:

 root.right =

insert(root.right, data)

 return root

Heaps

Definition: Special tree-based data structure that

satisfies the heap property: Min-Heap

(parent <= children) or Max-Heap

(parent >= children).

Types: Binary Heap, Fibonacci Heap.

Use Cases: Priority queues, heap sort.

Time

Complexity:

O(log n) for insertion and deletion.

Example:
import heapq

heap = []

heapq.heappush(heap, 5) # Insert

heapq.heappop(heap) # Remove

min

Core Concepts

Definition: Data structure that implements an

associative array abstract data type,

which maps keys to values.

Hash

Function:

Function that maps keys to indices in the

array.

Collision

Handling:

Techniques to handle multiple keys

mapping to the same index (e.g.,

chaining, open addressing).

Use Cases: Implementing dictionaries, caching,

symbol tables.

Example:
dictionary = {}

dictionary['apple'] = 1

print(dictionary['apple']) #

Output: 1

Collision Resolution Techniques

Chaining: Each index in the hash table points to a

linked list of key-value pairs.

Open

Addressing:

If a collision occurs, probe for an empty

slot in the table (e.g., linear probing,

quadratic probing, double hashing).

Time

Complexity:

O(1) average case (with good hash

function), O(n) worst case (all keys map

to the same index).

Load Factor: Ratio of the number of entries to the

number of buckets. High load factors

increase collision probability.

Considerations

Choosing a good hash function is crucial for the

performance of a hash table. A poorly chosen hash

function can lead to frequent collisions and O(n)

performance.

Load factor should be monitored and the hash table

resized when it exceeds a certain threshold to maintain

good performance.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

