
Dynamic Programming Cheatsheet
A concise guide to Dynamic Programming concepts, techniques, and common patterns for algorithm design and interview preparation.

Core Concepts

Common DP Patterns

Understanding DP

What is Dynamic Programming?

Dynamic Programming (DP) is an algorithmic

technique for solving an optimization problem by

breaking it down into simpler subproblems and

utilizing the fact that the optimal solution to the

overall problem depends upon the optimal

solution to its subproblems.

Key Properties:

Optimal Substructure: An optimal solution

can be constructed from optimal solutions of

its subproblems.

Overlapping Subproblems: The problem can

be broken down into subproblems which are

reused several times.

DP vs Divide & Conquer:

Unlike Divide & Conquer (e.g., Merge Sort), which

divides the problem into independent

subproblems, DP is applicable when subproblems

are not independent, and subproblems share

subsubproblems.

Approaches

Top-Down

(Memoization)

Start with the main problem

and recursively solve

subproblems. Store results of

subproblems to avoid

recomputation.

Bottom-Up

(Tabulation)

Solve subproblems first and

build up to the main problem.

Store results in a table (array).

When to use

which

approach?

Memoization can be more

intuitive, while tabulation can

be more efficient due to

reduced function call

overhead.

Steps to Solve DP Problems

1. Define the subproblem: Clearly state what

the subproblem is trying to compute.

2. Identify the base cases: Determine the

simplest subproblems that can be solved

directly.

3. Write the recurrence relation: Express the

solution to a subproblem in terms of

solutions to smaller subproblems.

4. Implement the algorithm: Use either

memoization (top-down) or tabulation

(bottom-up) to solve the problem efficiently.

1D DP

Characteristics:

Involves a single changing variable, often the

length of an array or a value within a range.

Example: Fibonacci Sequence

Compute the nth Fibonacci number.

Recurrence relation: F(n) = F(n-1) + F(n-2)

Base cases: F(0) = 0, F(1) = 1

def fibonacci(n):

 dp = [0] * (n + 1)

 dp[0] = 0

 dp[1] = 1

 for i in range(2, n + 1):

 dp[i] = dp[i - 1] + dp[i - 2]

 return dp[n]

2D DP

Characteristics:

Involves two changing variables, often indices of

two arrays or a 2D grid.

Example: Edit Distance

Compute the minimum number of operations

(insert, delete, replace) to convert one string to

another.

Recurrence relation: Based on whether the

characters match or not.

Base cases: Empty strings.

def edit_distance(s1, s2):

 dp = [[0] * (len(s2) + 1) for _ in

range(len(s1) + 1)]

 for i in range(len(s1) + 1):

 dp[i][0] = i

 for j in range(len(s2) + 1):

 dp[0][j] = j

 for i in range(1, len(s1) + 1):

 for j in range(1, len(s2) + 1):

 if s1[i - 1] == s2[j - 1]:

 dp[i][j] = dp[i - 1][j -

1]

 else:

 dp[i][j] = 1 + min(dp[i

- 1][j], dp[i][j - 1], dp[i - 1][j - 1])

 return dp[len(s1)][len(s2)]

Knapsack Pattern

0/1 Knapsack Each item can either be included

or excluded.

Recurrence: dp[i][w] =

max(dp[i-1][w], value[i] +

dp[i-1][w - weight[i]])

Unbounded

Knapsack

Each item can be included

multiple times.

Recurrence: dp[i][w] =

max(dp[i-1][w], value[i] +

dp[i][w - weight[i]])

Variations Subset Sum, Partition Equal

Subset Sum, etc. Often involve

modifying the knapsack

recurrence.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/780-dynamic-programming-cheatsheet
http://cheatsheetshero.com/user/all/780-dynamic-programming-cheatsheet
http://cheatsheetshero.com/user/all/780-dynamic-programming-cheatsheet
https://cheatsheetshero.com/

Optimization Techniques

Practice Problems

Space Optimization

Reducing Space Complexity

In some DP problems, you only need the previous

row or column to compute the current one. In

these cases, you can reduce space complexity by

using only two rows or columns instead of storing

the entire table.

Example: Fibonacci (Space Optimized)

def fibonacci_space_optimized(n):

 if n <= 1:

 return n

 a, b = 0, 1

 for _ in range(2, n + 1):

 a, b = b, a + b

 return b

Time Optimization

Avoiding Redundant Calculations

Memoization is a key technique to avoid

recomputing the same subproblems. Ensure your

base cases are correctly defined to prevent

infinite recursion.

Careful Recurrence Design

A well-defined recurrence relation can

significantly impact the time complexity.

Consider alternative formulations that might lead

to faster computation.

Bitmasking

When to Use When the problem involves

sets or subsets of elements,

and the size of the set is

relatively small (<= 20).

Representation Represent a set as an integer,

where the ith bit is 1 if the ith

element is in the set, and 0

otherwise.

Example Traveling Salesman Problem

(TSP) variations, Set Cover

Problem.

Classic Problems

Longest Common Subsequence (LCS)

Longest Increasing Subsequence (LIS)

Coin Change Problem

Rod Cutting Problem

Medium Difficulty

Maximum Subarray Problem (Kadane’s

Algorithm)

Word Break Problem

Minimum Cost Path in a Grid

Hard Difficulty

Regular Expression Matching

Edit Distance with Constraints

Matrix Chain Multiplication

Tips for Interview Prep

Understand the Problem: Clarify constraints

and edge cases.

Explain Your Approach: Articulate your

thought process clearly.

Write Clean Code: Pay attention to variable

names, comments, and code structure.

Test Thoroughly: Test with various inputs,

including edge cases.

Analyze Complexity: Determine time and

space complexity.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

