
Kubernetes Cheat Sheet
A handy reference for essential Kubernetes commands, concepts, and configurations, designed to aid developers and operators in managing

containerized applications.

Core Concepts

Configuration and Storage

Pods

Definition: The smallest deployable unit in Kubernetes,

representing a single instance of a running process.

A Pod encapsulates one or more containers, storage

resources, a unique network IP, and options that

govern how the container(s) should run.

Pods are ephemeral; they are not designed to be

persistent.

Creating a Pod:

Apply with: kubectl apply -f pod.yaml

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: my-container

 image: nginx:latest

Common Commands:

kubectl get pods : List all pods.

kubectl describe pod <pod-name> : Get detailed

information about a specific pod.

kubectl delete pod <pod-name> : Delete a pod.

Deployments

Definition: A Deployment provides declarative updates

for Pods and ReplicaSets.

It ensures a specified number of pod replicas are

running at any given time.

Deployments support rolling updates and rollbacks.

Creating a Deployment:

Apply with: kubectl apply -f deployment.yaml

apiVersion: apps/v1

kind: Deployment

metadata:

 name: my-deployment

spec:

 replicas: 3

 selector:

 matchLabels:

 app: my-app

 template:

 metadata:

 labels:

 app: my-app

 spec:

 containers:

 - name: my-container

 image: httpd:latest

Common Commands:

kubectl get deployments : List all deployments.

kubectl describe deployment <deployment-

name> : Get details about a specific deployment.

kubectl scale deployment <deployment-name> --

replicas=<number> : Scale a deployment.

kubectl rollout status deployment

<deployment-name> : Check the rollout status.

kubectl rollout undo deployment <deployment-

name> : Rollback to the previous version.

Services

Definition: An abstraction which defines a logical set of

Pods and a policy by which to access them.

Services enable loose coupling between dependent

Pods.

Types include ClusterIP, NodePort, LoadBalancer,

and ExternalName.

Creating a Service:

Apply with: kubectl apply -f service.yaml

apiVersion: v1

kind: Service

metadata:

 name: my-service

spec:

 selector:

 app: my-app

 ports:

 - protocol: TCP

 port: 80

 targetPort: 8080

 type: ClusterIP

Common Commands:

kubectl get services : List all services.

kubectl describe service <service-name> : Get

details about a specific service.

kubectl expose deployment <deployment-name> -

-port=<port> --target-port=<target-port> :

Expose a deployment as a new service.

Namespaces

Definition: Provide a scope for names. Names of

resources need to be unique within a namespace, but not

across namespaces.

Namespaces allow you to divide cluster resources

between multiple users or teams.

Creating a Namespace:

Apply with: kubectl apply -f namespace.yaml

apiVersion: v1

kind: Namespace

metadata:

 name: my-namespace

Common Commands:

kubectl get namespaces : List all namespaces.

kubectl create namespace <namespace-name> :

Create a new namespace.

kubectl config set-context --current --

namespace=<namespace-name> : Set the current

namespace for kubectl.

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/760-kubernetes-cheat-sheet
http://cheatsheetshero.com/user/all/760-kubernetes-cheat-sheet
http://cheatsheetshero.com/user/all/760-kubernetes-cheat-sheet
https://cheatsheetshero.com/

Networking

ConfigMaps

Definition: A ConfigMap is an API object used to store

non-confidential data in key-value pairs. Pods can

consume ConfigMaps as environment variables,

command-line arguments, or as configuration files in a

volume.

ConfigMaps allow you to decouple configuration

artifacts from image content to keep containerized

applications portable.

Creating a ConfigMap:

Apply with: kubectl apply -f configmap.yaml

apiVersion: v1

kind: ConfigMap

metadata:

 name: my-config

data:

 key1: value1

 key2: value2

Common Commands:

kubectl get configmaps : List all configmaps.

kubectl describe configmap <configmap-name> :

Get details about a specific configmap.

kubectl create configmap <configmap-name> --

from-literal=key1=value1 --from-

literal=key2=value2 : Create a configmap from

literals.

Secrets

Definition: A Secret is an API object used to store

sensitive information, such as passwords, OAuth tokens,

and SSH keys.

Storing sensitive information in a Secret is safer and

more flexible than putting it verbatim in a Pod

definition or in a container image.

Creating a Secret:

Apply with: kubectl apply -f secret.yaml

Note: Data must be base64 encoded.

apiVersion: v1

kind: Secret

metadata:

 name: my-secret

type: Opaque

data:

 username: $(echo -n 'myuser' | base64)

 password: $(echo -n 'mypassword' | base64)

Common Commands:

kubectl get secrets : List all secrets.

kubectl describe secret <secret-name> : Get

details about a specific secret.

kubectl create secret generic <secret-name> -

-from-literal=username=myuser --from-

literal=password=mypassword : Create a generic

secret.

Volumes

Definition: A Volume is a directory, possibly with some

data in it, which is accessible to the containers in a pod.

Volumes have a lifetime that is tied to the pod, but

can persist data through container restarts.

Volume Types:

emptyDir : A temporary directory that lasts as long

as the Pod is running.

hostPath : Mounts a file or directory from the host

node’s filesystem into your Pod.

persistentVolumeClaim : Used to request storage

from a PersistentVolume.

Using a Volume:

apiVersion: v1

kind: Pod

metadata:

 name: my-pod

spec:

 containers:

 - name: my-container

 image: nginx:latest

 volumeMounts:

 - mountPath: /data

 name: my-volume

 volumes:

 - name: my-volume

 emptyDir: {}

PersistentVolumes and

PersistentVolumeClaims

PersistentVolume (PV): A piece of storage in the cluster

that has been provisioned by an administrator or

dynamically provisioned using Storage Classes.

PersistentVolumeClaim (PVC): A request for storage by a

user. It is a claim on a PV.

Creating a PersistentVolume:

apiVersion: v1

kind: PersistentVolume

metadata:

 name: my-pv

spec:

 capacity:

 storage: 10Gi

 accessModes:

 - ReadWriteOnce

 hostPath:

 path: /data/pv

Creating a PersistentVolumeClaim:

apiVersion: v1

kind: PersistentVolumeClaim

metadata:

 name: my-pvc

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 5Gi

Usage: The PVC is then mounted as a volume in a pod.

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Advanced Topics

Ingress

Definition: An API object that manages external access to

the services in a cluster, typically HTTP.

Ingress may provide load balancing, SSL termination

and name-based virtual hosting.

Creating an Ingress:

Note: Requires an Ingress Controller to be running in the

cluster.

apiVersion: networking.k8s.io/v1

kind: Ingress

metadata:

 name: my-ingress

spec:

 rules:

 - host: myapp.example.com

 http:

 paths:

 - path: /

 pathType: Prefix

 backend:

 service:

 name: my-service

 port:

 number: 80

Common Commands:

kubectl get ingress : List all ingresses.

kubectl describe ingress <ingress-name> : Get

details about a specific ingress.

Network Policies

Definition: An application-centric view of which

connections are allowed. They specify how pods are

allowed to communicate with each other and other

network endpoints.

Network Policies use labels to select pods and define

rules which specify what traffic is allowed to and

from the selected pods.

Creating a Network Policy:

Note: Requires a Network Policy Controller to be running

in the cluster.

apiVersion: networking.k8s.io/v1

kind: NetworkPolicy

metadata:

 name: my-network-policy

spec:

 podSelector:

 matchLabels:

 app: my-app

 policyTypes:

 - Ingress

 ingress:

 - from:

 - ipBlock:

 cidr: 172.17.0.0/16

Common Commands:

kubectl get networkpolicies : List all network

policies.

kubectl describe networkpolicy

<networkpolicy-name> : Get details about a specific

network policy.

DNS

Service Discovery: Kubernetes provides internal DNS

resolution so pods can discover services by their DNS

name.

Pods can reach services using <service-name>.

<namespace>.svc.cluster.local .

Example: A service named my-service in the default

namespace can be accessed from within the cluster at

my-service.default.svc.cluster.local .

Helm

Definition: A package manager for Kubernetes, allowing

you to define, install, and upgrade even the most complex

Kubernetes application.

Helm uses charts, which are packages of pre-

configured Kubernetes resources.

Common Commands:

helm install <release-name> <chart-name> :

Install a chart.

helm upgrade <release-name> <chart-name> :

Upgrade a release.

helm uninstall <release-name> : Uninstall a

release.

helm list : List all releases.

Operators

Definition: Operators are software extensions to

Kubernetes that manage applications and their

components.

Operators automate tasks such as deployment,

scaling, backups, and upgrades.

Key Concepts: Operators leverage Kubernetes’

extensibility to define custom resources and controllers

that implement application-specific logic.

Troubleshooting

Common Issues and Commands:

Pod Failing to Start:

kubectl describe pod <pod-name> : Check

events for errors.

kubectl logs <pod-name> -c <container-

name> : View container logs.

Service Not Accessible:

kubectl get endpoints <service-name> :

Verify endpoints are configured correctly.

kubectl describe service <service-name> :

Check service configuration.

Node Issues:

kubectl get nodes : Check node status.

kubectl describe node <node-name> : Get

node details.

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

