
Boost C++ Libraries Cheat Sheet
A quick reference for commonly used Boost C++ libraries, providing concise information on their purpose, usage, and key features.

Smart Pointers

Boost.Asio

Boost.Filesystem

Overview

Boost Smart Pointers provide automatic memory

management, preventing memory leaks and simplifying

resource handling.

They act like regular pointers but automatically deallocate

the memory they point to when no longer in use.

Types of Smart Pointers

sco

ped_

ptr

Unique ownership. The object is automatically

deleted when the scoped_ptr goes out of

scope. Not copyable.

sha

red_

ptr

Shared ownership. The object is deleted when

the last shared_ptr pointing to it goes out of

scope. Thread-safe reference counting.

wea

k_pt

r

A non-owning observer of a shared_ptr . It can

be used to detect if the object managed by the

shared_ptr is still alive.

uni

que_

ptr

C++11 and later. Replaces scoped_ptr with

more features and move semantics.

Example Usage

#include <boost/smart_ptr.hpp>

#include <iostream>

int main() {

 boost::shared_ptr<int> ptr(new int(10));

 std::cout << *ptr << std::endl; // Output:

10

 return 0;

}

#include <boost/scoped_ptr.hpp>

void foo() {

 boost::scoped_ptr<int> ptr(new int(20));

 // Memory is automatically released when ptr

goes out of scope.

}

Overview

Boost.Asio is a cross-platform C++ library for network and

low-level I/O programming.

It provides an asynchronous model, allowing for efficient

handling of multiple concurrent connections.

Key Components

io_con

text

The core of Asio, providing the event loop for

asynchronous operations.

socket

s

Classes for creating and managing network

sockets (e.g., TCP, UDP).

buffer

s

Classes for representing data buffers used in

I/O operations.

timer

s

Classes for creating and managing

asynchronous timers.

Example: Simple TCP Server

#include <boost/asio.hpp>

#include <iostream>

using boost::asio::ip::tcp;

int main() {

 try {

 boost::asio::io_context io_context;

 tcp::acceptor acceptor(io_context,

tcp::endpoint(tcp::v4(), 1234));

 tcp::socket socket(io_context);

 acceptor.accept(socket);

 std::cout << "Client connected." <<

std::endl;

 } catch (std::exception& e) {

 std::cerr << "Exception: " << e.what() <<

std::endl;

 }

 return 0;

}

Overview

Boost.Filesystem provides portable facilities to

manipulate files and directories.

It abstracts away platform-specific details, allowing for

consistent file system operations across different

operating systems.

Key Classes and Functions

path Represents a file or directory path.

exists(path) Checks if a file or directory exists at

the given path.

create_director

y(path)

Creates a new directory at the given

path.

remove(path) Removes a file or directory.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/741-boost-c-libraries-cheat-sheet
http://cheatsheetshero.com/user/all/741-boost-c-libraries-cheat-sheet
http://cheatsheetshero.com/user/all/741-boost-c-libraries-cheat-sheet
https://cheatsheetshero.com/

Boost.Serialization

Example: Checking File Existence

#include <boost/filesystem.hpp>

#include <iostream>

namespace fs = boost::filesystem;

int main() {

 fs::path p("example.txt");

 if (fs::exists(p)) {

 std::cout << "File exists." << std::endl;

 } else {

 std::cout << "File does not exist." <<

std::endl;

 }

 return 0;

}

Overview

Boost.Serialization enables serializing C++ data structures

to various formats (e.g., binary, XML) and deserializing

them back.

It simplifies the process of saving and loading complex

objects.

Key Concepts

serializ

e

function

A member function (or a free function) that

defines how an object is serialized and

deserialized.

Archive A class that handles the actual

serialization/deserialization process (e.g.,

binary_oarchive , xml_oarchive).

Example: Serializing a Class

#include

<boost/serialization/serialization.hpp>

#include

<boost/serialization/binary_archive.hpp>

#include <fstream>

class MyData {

public:

 int x;

 double y;

 template <class Archive>

 void serialize(Archive & ar, const unsigned

int version)

 {

 ar & x;

 ar & y;

 }

};

int main() {

 MyData data = {5, 3.14};

 std::ofstream ofs("data.bin");

 boost::archive::binary_oarchive ar(ofs);

 ar << data;

 return 0;

}

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

