
Clean Code Principles & Practices
A cheat sheet summarizing key principles and practices for writing clean, maintainable, and readable code.

Core Principles

Readability & Simplicity

Principle: Code should be easy to understand and

modify.

Use meaningful names for variables,

functions, and classes.

Keep functions small and focused on a single

task.

Avoid complex logic and nested conditional

statements.

Benefit: Reduces cognitive load, speeds up

debugging, and facilitates collaboration.

Example:

Bad

def process_data(d, f):

 for i in range(len(d)):

 if f(d[i]) > 10:

 print(d[i])

Good

def process_data(data, filter_func):

 for item in data:

 if filter_func(item) > 10:

 print(item)

DRY (Don't Repeat Yourself)

Principle: Avoid duplicating code. Abstract

common logic into reusable functions or

modules.

Benefit: Reduces redundancy, simplifies

maintenance, and minimizes the risk of

inconsistencies.

Example:

Bad

def calculate_area_rectangle(width,

height):

 return width * height

def calculate_perimeter_rectangle(width,

height):

 return 2 * (width + height)

Good

def

calculate_rectangle_properties(width,

height):

 area = width * height

 perimeter = 2 * (width + height)

 return area, perimeter

KISS (Keep It Simple, Stupid)

Principle: Favor simplicity over complexity.

Choose the simplest solution that meets the

requirements.

Benefit: Easier to understand, debug, and

maintain. Reduces the likelihood of introducing

bugs.

Example:

Bad

def complex_calculation(x, y, z):

 # A very complicated formula

 result = (x**2 + y**2)**0.5 * z / (1

+ x * y)

 return result

Good

def simple_calculation(x, y):

 return x + y

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/740-clean-code-principles-practices-cheatsheet
http://cheatsheetshero.com/user/all/740-clean-code-principles-practices-cheatsheet
http://cheatsheetshero.com/user/all/740-clean-code-principles-practices-cheatsheet
https://cheatsheetshero.com/

Functions

Comments and Documentation

Function Length

Guideline: Functions should be small and

focused. Ideally, a function should not exceed

20-30 lines of code.

Reasoning: Shorter functions are easier to

understand, test, and reuse. They promote

modularity and reduce complexity.

Technique: Break down large functions into

smaller, more manageable sub-functions.

Example:

Bad

def process_order(order):

 # Many lines of code doing multiple

things:

 # - Validate order

 # - Calculate total

 # - Apply discounts

 # - Update inventory

 # - Send confirmation email

 pass

Good

def validate_order(order): pass

def calculate_total(order): pass

def apply_discounts(order): pass

def update_inventory(order): pass

def send_confirmation_email(order): pass

def process_order(order):

 if validate_order(order):

 total = calculate_total(order)

 discounted_total =

apply_discounts(total)

 update_inventory(order)

 send_confirmation_email(order)

Function Arguments

Guideline: Minimize the number of function

arguments. Ideally, a function should have 0-3

arguments.

Reasoning: Functions with fewer arguments are

easier to call and understand. They reduce the

risk of errors and improve readability.

Technique: Use objects or data structures to

group related arguments. Consider using a builder

pattern for functions with many optional

arguments.

Example:

Bad

def create_user(name, age, address,

phone, email):

 # ...

 pass

Good

class User:

 def __init__(self, name, age,

address, phone, email):

 self.name = name

 self.age = age

 self.address = address

 self.phone = phone

 self.email = email

def create_user(user: User):

 # ...

 pass

Function Naming

Guideline: Choose descriptive and meaningful

names for functions. Function names should

clearly indicate what the function does.

Reasoning: Good function names improve code

readability and make it easier to understand the

purpose of the function.

Technique: Use verbs to name functions (e.g.,

calculate_total , validate_input). Follow a

consistent naming convention.

Example:

Bad

def x(y): # What does x do with y?

 return y * 2

Good

def double_value(value):

 return value * 2

Purpose of Comments

Guideline: Comments should explain the why

behind the code, not the what. Good code should

be self-documenting.

Reasoning: Comments can provide valuable

context and insights into the design decisions

and intent of the code.

Technique: Use comments sparingly and only

when necessary to clarify complex logic or

provide additional information.

Best Practice: Avoid redundant comments that

simply restate the code.

Documentation

Guideline: Use documentation to describe the

purpose, usage, and design of modules, classes,

and functions.

Reasoning: Documentation helps other

developers (and your future self) understand how

to use and maintain the code.

Technique: Use docstrings, README files, and

other forms of documentation to provide

comprehensive information about the codebase.

Tools: Sphinx (Python), JSDoc (JavaScript), etc.

Commenting Style

Guideline: Follow a consistent commenting style

throughout the codebase.

Reasoning: Consistent style improves readability

and maintainability.

Technique: Use appropriate commenting syntax

for the programming language (e.g., # for

Python, // for JavaScript).

Example:

This function calculates the total

cost of an order.

def calculate_total(order):

 # Apply discounts based on customer

loyalty.

 pass

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Error Handling

Importance of Error Handling

Guideline: Implement robust error handling to

prevent unexpected crashes and provide

informative error messages.

Reasoning: Proper error handling improves the

reliability and usability of the software.

Technique: Use try-except blocks (or equivalent)

to catch exceptions and handle them gracefully.

Best Practice: Log errors for debugging and

monitoring purposes.

Specific Exceptions

Guideline: Catch specific exceptions rather than

general exceptions.

Reasoning: Catching specific exceptions allows

you to handle different types of errors in different

ways.

Technique: Identify the specific exceptions that

can be raised by the code and catch them

individually.

Example:

Bad

try:

 # Some code that might raise an

exception

 pass

except Exception as e:

 print(f"An error occurred: {e}")

Good

try:

 # Some code that might raise an

exception

 pass

except ValueError as e:

 print(f"Invalid value: {e}")

except TypeError as e:

 print(f"Invalid type: {e}")

Resource Management

Guideline: Ensure that resources (e.g., files,

network connections) are properly released after

use.

Reasoning: Failure to release resources can lead

to resource leaks and performance issues.

Technique: Use try-finally blocks or context

managers (e.g., with statement in Python) to

ensure that resources are always released.

Example:

Good

with open("my_file.txt", "r") as f:

 # Do something with the file

 data = f.read()

File is automatically closed when the

'with' block exits

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

