
Realm Database Cheatsheet
A concise guide to using Realm, covering schema definition, CRUD operations, queries, and relationships.

Core Concepts & Setup

Defining Realm Models

CRUD Operations

Realm Fundamentals

Realm: A mobile database solution that offers an

alternative to SQLite and Core Data. It’s designed for

speed and ease of use.

Key Features:

Real-time: Data changes are immediately reflected.

Cross-platform: Supports multiple platforms (iOS,

Android, React Native, etc.).

Object-oriented: Data is represented as objects.

Data Model: Realm uses a schema to define the structure

of your data. Models are defined as classes.

Installation (Swift): Add realm-swift to your

Podfile or use Swift Package Manager.

Importing Realm:

import RealmSwift

Configuration

Default Realm The default Realm is suitable for most

basic use cases. It stores data in the

app’s default location.

Custom Realm

Configuration

Use Realm.Configuration to

customize Realm’s behavior, like

specifying a different file path or

encryption key.

In-Memory

Realm

Useful for testing. Data is not

persisted to disk.

Realm.Configuration.defaultC

onfiguration =

Realm.Configuration(inMemory

Identifier:

"MyInMemoryRealm")

Error Handling

Realm throws exceptions for various errors. Wrap Realm

operations in do-catch blocks to handle them.

Common Errors:

Invalid schema: Incorrect property types or missing

primary keys.

Migration required: Schema changes necessitate a

migration.

Example:

do {

 let realm = try Realm()

} catch {

 print("Error initializing Realm: (error)")

}

Basic Model Definition

Realm models are defined as classes that inherit from

Object .

Properties must be declared with the @objc dynamic

var prefix to enable Realm’s change tracking.

Example:

class Dog: Object {

 @objc dynamic var name = ""

 @objc dynamic var age = 0

}

Supported Data Types

Int Integer numbers.

Double , Float Floating-point numbers.

String Textual data.

Bool Boolean values (true/false).

Date Date and time values.

Data Binary data.

Optional Properties

Properties can be declared as optional using ? .

Optional properties can store nil values.

Example:

class Person: Object {

 @objc dynamic var name: String? = nil

}

Ignored Properties

Properties marked with @objc ignore are not persisted

to the Realm file.

Useful for temporary or calculated values.

Example:

class Rectangle: Object {

 @objc dynamic var width = 0

 @objc dynamic var height = 0

 @objc ignore var area: Int {

 return width * height

 }

}

Creating Objects

Create instances of your Realm model classes and add

them to the Realm.

Example:

do {

 let realm = try Realm()

 try realm.write {

 let dog = Dog()

 dog.name = "Buddy"

 dog.age = 3

 realm.add(dog)

 }

} catch {

 print("Error creating object: (error)")

}

Reading Objects

Use Realm queries to retrieve objects.

Example:

do {

 let realm = try Realm()

 let dogs = realm.objects(Dog.self)

 for dog in dogs {

 print("Dog name: (dog.name), age:

(dog.age)")

 }

} catch {

 print("Error reading objects: (error)")

}

Updating Objects

Update objects within a write transaction.

Example:

do {

 let realm = try Realm()

 let dog = realm.objects(Dog.self).first

 try realm.write {

 dog?.age = 4

 }

} catch {

 print("Error updating object: (error)")

}

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/726-realm-database-cheatsheet
http://cheatsheetshero.com/user/all/726-realm-database-cheatsheet
http://cheatsheetshero.com/user/all/726-realm-database-cheatsheet
https://cheatsheetshero.com/

Querying Realm Data

Deleting Objects

Delete objects within a write transaction.

Example:

do {

 let realm = try Realm()

 let dog = realm.objects(Dog.self).first

 try realm.write {

 if let dogToDelete = dog {

 realm.delete(dogToDelete)

 }

 }

} catch {

 print("Error deleting object: (error)")

}

Basic Queries

Realm uses a query language similar to NSPredicate.

Use

realm.objects(YourModel.self).filter("your_query"

) to filter results.

Example:

let youngDogs =

realm.objects(Dog.self).filter("age < 5")

Common Query Operators

= Equals.

!= Not equals.

> Greater than.

< Less than.

>= Greater than or equal to.

<= Less than or equal to.

BEGINSWITH String starts with.

ENDSWITH String ends with.

CONTAINS String contains.

LIKE String matches a wildcard pattern.

Compound Predicates

Combine predicates using AND , OR , and NOT .

Example:

let query = "age > 2 AND name BEGINSWITH 'B'"

let results =

realm.objects(Dog.self).filter(query)

Sorting Results

Use sorted(byKeyPath:ascending:) to sort results.

Example:

let sortedDogs =

realm.objects(Dog.self).sorted(byKeyPath:

"age", ascending: true)

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

