CHEAT
SHEETS

Regex & Text Manipulation Cheatsheet

A comprehensive guide to regular expressions and text manipulation techniques, essential for algorithms and interview preparation.

Regex Fundamentals

Basic Metacharacters

Quantifiers and Grouping

Character Classes

(Dot)

A (Caret)

$ (Dollar)

* (Asterisk)

+ (Plus)

2 (Question
Mark)

[1 (Character
Set)

[~] (Negated
Character Set)

| (Pipe)

Matches any single character except {n}
newline.

" on "

Example: a.c matches “abc”, “aac”,

"adc”, etc.

Matches the beginning of the string.

Example: nrabc matches “abc” only

. - {n, m}
if it's at the beginning.

Matches the end of the string.

Example: xyz$ matches “xyz” only

if it's at the end.
()

Matches O or more occurrences of (Grouping)

the preceding character or group.

Example: ab*c matches “ac”, “abc”,
"abbc”, "abbbc”, etc.

Matches 1 or more occurrences of \ (Escape)

the preceding character or group.

Example: ab+c matches “abc”,

"abbc”, "abbbc”, etc., but not “ac”.

Matches O or 1 occurrence of the
preceding character or group.

Example: ab?c matches “ac” or

abc”.

Matches any single character within
the set.

Example: [aeiou] matchesany

vowel.

Matches any single character not
within the set.

Example: [raeiou] matches any

character that is not a vowel.

Acts as an “OR" operator, matching
either the expression before or after

the pipe.

Example: cat|dog matches either

“cat” or "dog".

Advanced Regex Concepts

Page 1 of 3

Matches exactly n occurrences.

Example: a{3} matches “aaa".
Matches n or more occurrences.

Example: a{2,} matches “aa”, “aaa”,

"aaaa”, etc.

Matches between n and m

occurrences.

Example: a{2,4} matches “aa”, “aaa”, or

"aaaa".

Groups patterns together, allowing you to
apply quantifiers or other operations to
the entire group.

Example: (ab)+ matches “ab”, “abab”,

"ababab”, etc.

Escapes special characters, allowing you
to match them literally.

Example: * matches a literal asterisk.

Matches any digit (0-9).

Example: \d+ matches one or more digits.

Matches any word character (letters, digits, and
underscores).

Example: \w+ matches one or more word

characters.

Matches any whitespace character (space, tab,

newline, etc.).

Example: \s+ matches one or more whitespace

characters.

Matches any non-digit character.

Example: \D+ matches one or more non-digit

characters.

Matches any non-word character.

Example: \w+ matches one or more non-word

characters.

Matches any non-whitespace character.

Example: \s+ matches one or more non-

whitespace characters.

https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/725-regex-text-manipulation-cheatsheet
http://cheatsheetshero.com/user/all/725-regex-text-manipulation-cheatsheet
http://cheatsheetshero.com/user/all/725-regex-text-manipulation-cheatsheet
https://cheatsheetshero.com/

Lookarounds (Zero-Width Assertions) Backreferences

(?=pattern) Asserts that the pattern is followed \1, Refers to the captured group with the

(Positive by the specified pattern , but \2 , corresponding number. Useful for matching
Lookahead) doesn'tinclude the pattern inthe etc. repeated patterns.
match.

Example: (.)\1+ matches two or more
Example: \w+(?=\s) matchesa consecutive identical characters.

word followed by a space, but the

space isn't part of the match. Flags/Modifiers
A PAEEEN) Asserts that the pattern is not i (Case- Makes the regex case-insensitive.
(Negative followed by the specified pattern . insensitive)
Lookahead) Example: /abc/i matches “abc”,

Example: \w+(?!\s) matchesa “Abc”, "ABC”, etc.

word not followed by a space.

g (Global) Finds all matches rather than stopping

(?<=pattern) after the first.

Asserts that the pattern is preceded
(Positive by the specified pattern , but

Lookbehind) doesn't include the pattern inthe Example: /abc/g finds all occurrences

match. Requires fixed width pattern of “abc” in a string.

i some languages m (Multiline) Treats the string as multiple lines,

Example: (7<=\s)\w+ matches a allowing A and $ to match the start

word preceded by a space, but the and end of each line.

space isn't part of the match.
P : par Example: /nrabc$/m matches “abc” at

?<!pattern Asserts that the pattern is not the beginning of any line.

(Negative preceded by the specified pattern .

Lookbehind)

s (Dotall) Allows the . to match newline

Requires fixed width pattern in some
characters as well.
languages.

Example: /a.c/s matches “a\nc”.
Example: (?<!\s)\w+ matchesa

word not preceded by a space.
Text Manipulation Techniques
String Splitting

String Replacement Substring Extraction

Splitting by a Use the split() method (or Basic Replace a substring with another string. Using indices Extract a portion of a string using start
delimiter equivalent) to divide a string into an array Replacement and end indices.
based on a delimiter. Example (Java):
String text = "Hello World"; Example (C++):
Example (Python): String result = #include <iostream>
text = "apple, banana,orange" text.replace("world", "Java"); #include <string>

result = text.split(",") # // Output: Hello Java
Output: ['apple', 'banana',

‘orange'] Regex

int main() {

Use regex for more powerful std::string text = "Hello

Replacement replacement operations. World";
Splitting by Use regex for more complex splitting std::string result =
) Example (C#):
Regex scenarios. text.substr(6, 5); // Start at
using index 6, length 5
Example (JavaScrlpt): System.Text.RegularExpressions std::cout << result <<
const text = "one two three 7 std::endl; // output: world
four"; return 0;

Regex & Text Manipulation in Algorithms

Page 2 of 3

const result =
text.split(/\s+/); // Split by
one or more spaces

// Output: ['one', 'two',

"three', 'four']

string text = "123-456-7890";
string result =

Regex.Replace(text, "[\\d-]",
"X"); // Output: XXX-XXX-XXXX

Use regex groups to extract specific

parts of a string.

Example (Ruby):

text = "My phone number is
123-456-7890"
match = text.match(/.*(\d{3}-
\d{3}-\d{4})/) #Capture group
if match

puts match[1] # oOutput: 123-
456-7890

end

https://cheatsheetshero.com

https://cheatsheetshero.com/

Palindrome Check Validating User Input String Compression/Decompression

Use regex to preprocess the string by removing non- Regex is excellent for validating formats such as email Text manipulation techniques can be used in string
alphanumeric characters and converting to lowercase. addresses, phone numbers, or passwords. compression and decompression algorithms, such as Run-
Then, compare the string to its reverse. Length Encoding (RLE).
Example (JavaScript):
Example (Python): function isvalidEmail(email) { Example (Python):
import re const emailRegex = /A[M\s@]+@[M\s@]+\.
[M\s@]+$/; def compress_string(s):
def is_palindrome(s): return emailRegex.test(email); compressed = "'
processed_string = re.sub(r'[Ma-zA-Z0-9]", } count = 1
', s).lower() for i in range(len(s)):
return processed_string == console.log(isvalidEmail("test@example.com")); if i + 1 < len(s) and s[i] == s[i +
processed_string[::-1] // Output: true 1]
console.log(isvalidEmail("invalid-email")); // count += 1
print(is_palindrome("A man, a plan, a canal: Output: false else:
Panama")) # Output: True compressed += s[i] + str(count)

Parsing Log Files count = 1

return compressed

Regex can be used to extract relevant information from
log files print(compress_string("AAABCCDAA")) # Output:
A3B1C2D1A2

Example (Python):

import re

log_line = "2023-10-26 10:00:00 INFO: User
logged in"
match = re.search(r'INFO: (.*)$', log_line)
if match:

print(match.group(1)) # Output: User logged

in

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

