
Regex & Text Manipulation Cheatsheet
A comprehensive guide to regular expressions and text manipulation techniques, essential for algorithms and interview preparation.

Regex Fundamentals

Advanced Regex Concepts

Basic Metacharacters

. (Dot) Matches any single character except

newline.

Example: a.c matches “abc”, “aac”,

“adc”, etc.

^ (Caret) Matches the beginning of the string.

Example: ^abc matches “abc” only

if it’s at the beginning.

$ (Dollar) Matches the end of the string.

Example: xyz$ matches “xyz” only

if it’s at the end.

* (Asterisk) Matches 0 or more occurrences of

the preceding character or group.

Example: ab*c matches “ac”, “abc”,

“abbc”, “abbbc”, etc.

+ (Plus) Matches 1 or more occurrences of

the preceding character or group.

Example: ab+c matches “abc”,

“abbc”, “abbbc”, etc., but not “ac”.

? (Question

Mark)

Matches 0 or 1 occurrence of the

preceding character or group.

Example: ab?c matches “ac” or

“abc”.

[] (Character

Set)

Matches any single character within

the set.

Example: [aeiou] matches any

vowel.

[^] (Negated

Character Set)

Matches any single character not

within the set.

Example: [^aeiou] matches any

character that is not a vowel.

| (Pipe) Acts as an “OR” operator, matching

either the expression before or after

the pipe.

Example: cat|dog matches either

“cat” or “dog”.

Quantifiers and Grouping

{n} Matches exactly n occurrences.

Example: a{3} matches “aaa”.

{n,} Matches n or more occurrences.

Example: a{2,} matches “aa”, “aaa”,

“aaaa”, etc.

{n,m} Matches between n and m

occurrences.

Example: a{2,4} matches “aa”, “aaa”, or

“aaaa”.

()

(Grouping)

Groups patterns together, allowing you to

apply quantifiers or other operations to

the entire group.

Example: (ab)+ matches “ab”, “abab”,

“ababab”, etc.

\ (Escape) Escapes special characters, allowing you

to match them literally.

Example: * matches a literal asterisk.

Character Classes

\

d

Matches any digit (0-9).

Example: \d+ matches one or more digits.

\

w

Matches any word character (letters, digits, and

underscores).

Example: \w+ matches one or more word

characters.

\

s

Matches any whitespace character (space, tab,

newline, etc.).

Example: \s+ matches one or more whitespace

characters.

\

D

Matches any non-digit character.

Example: \D+ matches one or more non-digit

characters.

\

W

Matches any non-word character.

Example: \W+ matches one or more non-word

characters.

\

S

Matches any non-whitespace character.

Example: \S+ matches one or more non-

whitespace characters.

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/725-regex-text-manipulation-cheatsheet
http://cheatsheetshero.com/user/all/725-regex-text-manipulation-cheatsheet
http://cheatsheetshero.com/user/all/725-regex-text-manipulation-cheatsheet
https://cheatsheetshero.com/

Text Manipulation Techniques

Regex & Text Manipulation in Algorithms

Lookarounds (Zero-Width Assertions)

(?=pattern)

(Positive

Lookahead)

Asserts that the pattern is followed

by the specified pattern , but

doesn’t include the pattern in the

match.

Example: \w+(?=\s) matches a

word followed by a space, but the

space isn’t part of the match.

?!pattern

(Negative

Lookahead)

Asserts that the pattern is not

followed by the specified pattern .

Example: \w+(?!\s) matches a

word not followed by a space.

(?<=pattern)

(Positive

Lookbehind)

Asserts that the pattern is preceded

by the specified pattern , but

doesn’t include the pattern in the

match. Requires fixed width pattern

in some languages.

Example: (?<=\s)\w+ matches a

word preceded by a space, but the

space isn’t part of the match.

?<!pattern

(Negative

Lookbehind)

Asserts that the pattern is not

preceded by the specified pattern .

Requires fixed width pattern in some

languages.

Example: (?<!\s)\w+ matches a

word not preceded by a space.

Backreferences

\1 ,

\2 ,

etc.

Refers to the captured group with the

corresponding number. Useful for matching

repeated patterns.

Example: (.)\1+ matches two or more

consecutive identical characters.

Flags/Modifiers

i (Case-

insensitive)

Makes the regex case-insensitive.

Example: /abc/i matches “abc”,

“Abc”, “ABC”, etc.

g (Global) Finds all matches rather than stopping

after the first.

Example: /abc/g finds all occurrences

of “abc” in a string.

m (Multiline) Treats the string as multiple lines,

allowing ^ and $ to match the start

and end of each line.

Example: /^abc$/m matches “abc” at

the beginning of any line.

s (Dotall) Allows the . to match newline

characters as well.

Example: /a.c/s matches “a\nc”.

String Splitting

Splitting by a

delimiter

Use the split() method (or

equivalent) to divide a string into an array

based on a delimiter.

Example (Python):

text = "apple,banana,orange"

result = text.split(",") #

Output: ['apple', 'banana',

'orange']

Splitting by

Regex

Use regex for more complex splitting

scenarios.

Example (JavaScript):

const text = "one two three

four";

const result =

text.split(/\s+/); // Split by

one or more spaces

// Output: ['one', 'two',

'three', 'four']

String Replacement

Basic

Replacement

Replace a substring with another string.

Example (Java):

String text = "Hello World";

String result =

text.replace("World", "Java");

// Output: Hello Java

Regex

Replacement

Use regex for more powerful

replacement operations.

Example (C#):

using

System.Text.RegularExpressions

;

string text = "123-456-7890";

string result =

Regex.Replace(text, "[\\d-]",

"X"); // Output: XXX-XXX-XXXX

Substring Extraction

Using indices Extract a portion of a string using start

and end indices.

Example (C++):

#include <iostream>

#include <string>

int main() {

 std::string text = "Hello

World";

 std::string result =

text.substr(6, 5); // Start at

index 6, length 5

 std::cout << result <<

std::endl; // Output: World

 return 0;

}

Regex-based

extraction

Use regex groups to extract specific

parts of a string.

Example (Ruby):

text = "My phone number is

123-456-7890"

match = text.match(/.*(\d{3}-

\d{3}-\d{4})/) #Capture group

if match

 puts match[1] # Output: 123-

456-7890

end

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Palindrome Check

Use regex to preprocess the string by removing non-

alphanumeric characters and converting to lowercase.

Then, compare the string to its reverse.

Example (Python):

import re

def is_palindrome(s):

 processed_string = re.sub(r'[^a-zA-Z0-9]',

'', s).lower()

 return processed_string ==

processed_string[::-1]

print(is_palindrome("A man, a plan, a canal:

Panama")) # Output: True

Validating User Input

Regex is excellent for validating formats such as email

addresses, phone numbers, or passwords.

Example (JavaScript):

function isValidEmail(email) {

 const emailRegex = /^[^\s@]+@[^\s@]+\.

[^\s@]+$/;

 return emailRegex.test(email);

}

console.log(isValidEmail("test@example.com"));

// Output: true

console.log(isValidEmail("invalid-email")); //

Output: false

Parsing Log Files

Regex can be used to extract relevant information from

log files.

Example (Python):

import re

log_line = "2023-10-26 10:00:00 INFO: User

logged in"

match = re.search(r'INFO: (.*)$', log_line)

if match:

 print(match.group(1)) # Output: User logged

in

String Compression/Decompression

Text manipulation techniques can be used in string

compression and decompression algorithms, such as Run-

Length Encoding (RLE).

Example (Python):

def compress_string(s):

 compressed = ''

 count = 1

 for i in range(len(s)):

 if i + 1 < len(s) and s[i] == s[i +

1]:

 count += 1

 else:

 compressed += s[i] + str(count)

 count = 1

 return compressed

print(compress_string("AAABCCDAA")) # Output:

A3B1C2D1A2

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

