
Terraform Cheatsheet
A quick reference guide for Terraform, covering basic commands, resource definitions, modules, and best practices for infrastructure as code.

Terraform Basics

Resources and Providers

Modules and Variables

State Management and Best Practices

Core Concepts

Infrastructure as Code (IaC): Managing and provisioning

infrastructure through code rather than manual

processes.

Declarative Configuration: Defining the desired state of

the infrastructure, and Terraform figures out how to

achieve it.

State Management: Terraform tracks the state of your

infrastructure to understand what resources it manages

and how they relate to each other.

Providers: Plugins that allow Terraform to interact with

various cloud providers (AWS, Azure, GCP) and other

services.

Essential Commands

terraform

init

Initializes a Terraform working directory.

Downloads providers and modules.

terraform

plan

Creates an execution plan, showing the

changes Terraform will make.

terraform

apply

Applies the changes required to reach the

desired state of the configuration.

terraform

destroy

Destroys all resources managed by the

Terraform configuration.

terraform

show

Inspect the current state.

terraform

output

Show output values from the state.

Configuration Files

Terraform configuration files are written in HashiCorp

Configuration Language (HCL) or JSON.

Files typically have a .tf extension.

A basic configuration includes terraform , provider

and resource blocks.

Resource Definition

A resource block declares a resource of a given type

(e.g., aws_instance) and a local name.

resource "aws_instance" "example" {

 ami = "ami-0c55b3c825232a0d4"

 instance_type = "t2.micro"

}

Attributes within the resource block configure the

resource (e.g., ami , instance_type).

Provider Configuration

The provider block configures a specific provider, such

as AWS, Azure, or GCP.

provider "aws" {

 region = "us-west-2"

}

Credentials for the provider can be configured through

environment variables, or through the profile

argument.

Data Sources

Data sources allow Terraform to fetch information about

existing resources.

data "aws_ami" "ubuntu" {

 most_recent = true

 filter {

 name = "name"

 values = ["ubuntu/images/hvm-ssd/ubuntu-

focal-20.04-amd64-server/*"]

 }

 filter {

 name = "virtualization-type"

 values = ["hvm"]

 }

 owners = ["099720109477"] # Canonical

}

Use data sources to dynamically retrieve values needed

for resource configuration.

Module Definition

Modules are reusable Terraform configurations that

encapsulate a set of resources.

Modules improve code organization and reusability.

module "ec2_instance" {

 source = "./modules/ec2"

 instance_type = "t2.micro"

 ami = "ami-0c55b3c825232a0d4"

}

Input Variables

Variables allow you to parameterize your Terraform

configurations.

variable "instance_type" {

 type = string

 description = "EC2 instance type"

 default = "t2.micro"

}

Variables can be defined in variables.tf or passed via

command-line arguments or environment variables.

Output Values

Outputs expose values from your Terraform configuration,

making them accessible to other configurations or users.

output "instance_public_ip" {

 value = aws_instance.example.public_ip

 description = "The public IP of the EC2

instance."

}

Outputs are displayed after a successful terraform

apply .

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/722-terraform-cheatsheet
http://cheatsheetshero.com/user/all/722-terraform-cheatsheet
http://cheatsheetshero.com/user/all/722-terraform-cheatsheet
https://cheatsheetshero.com/

State Storage

Terraform state should be stored remotely for

collaboration and consistency.

Common remote state backends include AWS S3, Azure

Storage Account, and HashiCorp Terraform Cloud.

terraform {

 backend "s3" {

 bucket = "my-terraform-state-bucket"

 key = "terraform.tfstate"

 region = "us-west-2"

 }

}

Terraform Cloud

HashiCorp Terraform Cloud provides collaboration,

version control, and remote state management.

It allows teams to manage infrastructure changes in a

controlled and auditable manner.

Consider using Terraform Cloud for team-based

infrastructure management.

Best Practices

Version Control: Store your Terraform configurations in a

version control system like Git.

Code Reviews: Use code reviews to ensure the quality

and correctness of your Terraform configurations.

Testing: Implement automated testing to validate your

infrastructure changes.

Idempotency: Ensure that running terraform apply

multiple times produces the same result.

Locking: Remote state backends support locking, which

prevents concurrent modifications to the state file.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

