
NativeScript Cheatsheet
A quick reference guide for NativeScript, covering core concepts, UI elements, data binding, and common tasks.

Core Concepts

UI Elements

Data Binding

Application Structure

NativeScript applications are structured with a app

directory at the root. This directory contains the

application’s core components.

Key files and directories include:

app.ts or app.js : The main application file,

responsible for bootstrapping the application.

package.json : Contains metadata about the

application, dependencies, and build configurations.

App_Resources : Platform-specific resources

(icons, splash screens) for Android and iOS.

components : Directory for reusable UI components.

views : Directory for individual pages or screens of

the application.

NativeScript uses XML, CSS, and JavaScript/TypeScript

to define the UI and logic of the application.

XML: Defines the UI layout using NativeScript’s UI

elements.

CSS: Styles the UI elements.

JavaScript/TypeScript: Handles application logic

and data binding.

Modules and Plugins

Modules: NativeScript utilizes modules for extending

the core functionality. Modules are typically

installed via npm.

Example:

npm install @nativescript/core

Plugins: Plugins provide access to native device

features and third-party libraries. They are

also installed via npm and often require

platform-specific configuration.

Example:

npm install @nativescript/camera

Application Lifecycle

NativeScript applications go through a lifecycle similar to

other mobile apps. Key events include:

launch: When the application starts.

suspend: When the application is sent to the

background.

resume: When the application is brought back to the

foreground.

exit: When the application is terminated.

These events can be handled in the app.ts or app.js

file using the application module.

Example:

import * as application from

'@nativescript/core/application';

application.on(application.launchEvent, (args)

=> {

 console.log('Application launched');

});

Layouts

StackLa

yout

Arranges children in a single line, either

horizontally or vertically.

GridLay

out

Arranges children in a grid using rows and

columns.

Flexbox

Layout

Arranges children using flexbox properties,

offering flexible and responsive layouts.

Absolut

eLayout

Positions children using absolute

coordinates.

DockLay

out

Docks children to the edges of the layout.

Basic UI Components

Label Displays text. Supports basic formatting and

styling.

Button A clickable button. Handles tap events.

TextFiel

d

Allows single-line text input.

TextVie

w

Allows multi-line text input.

Image Displays an image from a local file or URL.

ListVie

w

Displays a scrollable list of items.

Styling

UI elements are styled using CSS. NativeScript supports a

subset of CSS properties, including:

color

background-color

font-size

font-family

margin

padding

border-width

border-color

CSS can be applied inline, in a separate CSS file, or using

platform-specific CSS files (e.g., app.android.css ,

app.ios.css).

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/718-nativescript-cheatsheet
http://cheatsheetshero.com/user/all/718-nativescript-cheatsheet
http://cheatsheetshero.com/user/all/718-nativescript-cheatsheet
https://cheatsheetshero.com/

Common Tasks

Basic Data Binding

NativeScript supports data binding, allowing UI elements

to be dynamically updated based on data changes. Data

binding is typically used with MVVM (Model-View-

ViewModel) architecture.

Data binding is defined in the XML using the {{ }}

syntax.

Example:

In the code-behind (e.g., TypeScript file), the myText

property is defined in the ViewModel.

<Label text="{{ myText }}" />

import { Observable } from

'@nativescript/core';

class MyViewModel extends Observable {

 constructor() {

 super();

 this.myText = 'Hello, NativeScript!';

 }

}

Two-Way Data Binding

Two-way data binding allows changes in the UI to update

the underlying data, and vice versa. This is typically used

with input elements like TextField .

Two-way data binding is defined using the bind

attribute.

Example:

Changes made in the TextField will update the

myText property in the ViewModel.

<TextField text="{{ myText, mode=TwoWay }}" />

Event Binding

Event binding allows UI events (e.g., button tap) to trigger

methods in the ViewModel.

Event binding is defined using the tap attribute (or

other relevant event).

Example:

In the ViewModel:

<Button text="Tap Me" tap="{{ onTap }}" />

import { Observable } from

'@nativescript/core';

class MyViewModel extends Observable {

 onTap() {

 console.log('Button tapped!');

 }

}

Navigation

Using

Frame

Navigation in NativeScript is typically handled

using the Frame component. The Frame is

a container that holds the navigation history.

You can navigate between pages using

frame.navigate() .

import { Frame } from

'@nativescript/core';

Frame.topmost().navigate('path/to/ne

wPage');

Passing

Data

Data can be passed during navigation using

the context property in the navigate

options.

In the destination page, access the data using

page.navigationContext .

Frame.topmost().navigate({

 moduleName: 'path/to/newPage',

 context: { myData: 'Hello' }

});

HTTP Requests

Making HTTP requests is done using the

@nativescript/core/http module.

Example:

Common methods include GET , POST , PUT , and

DELETE .

import * as http from

'@nativescript/core/http';

http.request({

 url: 'https://api.example.com/data',

 method: 'GET'

}).then((response) => {

 console.log(response.content.toString());

}, (error) => {

 console.error(error);

});

Platform-Specific Code

NativeScript allows writing platform-specific code using

the platform module.

Example:

This allows you to use native APIs and features that are

specific to each platform.

import * as platform from

'@nativescript/core/platform';

if (platform.isAndroid) {

 console.log('Running on Android');

} else if (platform.isIOS) {

 console.log('Running on iOS');

}

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

