
Regular Expressions (Regex) Basics Cheatsheet
A quick reference guide to the fundamental concepts and syntax of regular expressions, covering patterns, metacharacters, and common use cases.

Character Matching

Quantifiers

Anchors and Grouping

Flags (Modes)

Basic Characters

character Matches the literal character. For example, a matches ‘a’.

. (dot) Matches any single character except newline (\n).

\d Matches any digit (0-9).

\w Matches any word character (a-z, A-Z, 0-9, and underscore).

\s Matches any whitespace character (space, tab, newline).

\D Matches any non-digit character.

\W Matches any non-word character.

\S Matches any non-whitespace character.

Character Sets

[abc] Matches any single character in the set (a, b, or c).

[^abc] Matches any single character not in the set (anything but a, b, or c).

[a-z] Matches any lowercase letter (a to z).

[0-9] Matches any digit (0 to 9).

[a-zA-Z0-9_] Matches any alphanumeric character or underscore (same as \w).

[] Matches a space character inside a character set.

Quantifier Basics

* Matches the preceding character or group zero or more times.

+ Matches the preceding character or group one or more times.

? Matches the preceding character or group zero or one time (optional).

{n} Matches the preceding character or group exactly n times.

{n,} Matches the preceding character or group n or more times.

{n,m} Matches the preceding character or group between n and m times (inclusive).

Greedy vs. Lazy Matching

Greedy By default, quantifiers are greedy, meaning they match the longest

possible string.

Lazy

(Reluctant)

Adding ? after a quantifier makes it lazy, matching the shortest

possible string.

Example: .*?

Example Given the string 'aabbbbcc' , the regex a.*b will match 'aabbbb'

(greedy),

while a.*?b will match 'aab' (lazy).

Anchors

^ Matches the beginning of the string (or line, if

multiline mode is enabled).

$ Matches the end of the string (or line, if multiline

mode is enabled).

\

b

Matches a word boundary (the position between a

word character and a non-word character).

\

B

Matches a non-word boundary.

Grouping and Capturing

() Groups characters together and captures the

matched group.

Example: (abc)+ matches one or more

occurrences of ‘abc’.

\1 ,

\2 ,

etc.

Backreferences to captured groups. \1 refers

to the first captured group, \2 to the second,

and so on.

Example: (.)abc\1 matches ‘zabcz’.

(?:.

..)

Non-capturing group. Groups characters

together without capturing the matched group.

Useful for applying quantifiers or alternations.

Example: (?:abc)+ matches one or more

occurrences of ‘abc’ but doesn’t capture the

group.

Alternation

| Matches either the expression before or after the

| .

Example: cat|dog matches either ‘cat’ or ‘dog’.

Common Flags

i Case-insensitive matching. Matches both uppercase and lowercase letters.

g Global matching. Finds all matches rather than stopping after the first.

m Multiline mode. ^ and $ match the start and end of each line, rather than the

entire string.

s Dotall mode. Allows the dot (.) to match newline characters as well.

x Verbose mode. Allows whitespace and comments in the regex for better

readability.

Using Flags

Flags are often specified at the end of the regex pattern, e.g., /pattern/i for case-

insensitive matching.

In some languages, flags can be specified inline within the regex using the (?flag)

syntax, e.g., (?i)pattern .

Page 1 of 1 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/714-regular-expressions-regex-basics-cheatsheet
http://cheatsheetshero.com/user/all/714-regular-expressions-regex-basics-cheatsheet
http://cheatsheetshero.com/user/all/714-regular-expressions-regex-basics-cheatsheet
https://cheatsheetshero.com/

