
Turbo.js Cheatsheet
A comprehensive guide to Turbo.js, covering its core concepts, components, and usage patterns for building modern web applications with

enhanced speed and responsiveness.

Turbo Drive Fundamentals

Turbo Frames

Turbo Streams

Navigation & Page Updates

Turbo Drive: Automatically intercepts clicks on all <a>

tags and form submissions, preventing full page loads.

Instead, Turbo Drive fetches the new page in the

background and updates the current page’s <body>

using morphdom .

Turbolinks-classic Compatibility: Turbo is designed as a

successor to Turbolinks. Many concepts remain similar,

but Turbo offers significant improvements, including more

robust handling of JavaScript and asset loading.

No Configuration Needed: To enable Turbo Drive, simply

include the turbo.js file in your application. It

automatically enhances existing links and forms.

Meta Tags: You can control Turbo Drive’s behavior using

meta tags in the <head> section of your pages.

Example: <meta name="turbo-visit-control"

content="reload">

Page Visit Events

turbo:befor

e-visit

Fired before Turbo Drive starts a visit.

turbo:visi

t

Fired when Turbo Drive is about to fetch

a new page.

turbo:befor

e-cache

Fired before Turbo Drive caches the

current page.

turbo:befor

e-render

Fired before Turbo Drive renders the new

page.

turbo:rende

r

Fired after Turbo Drive renders the new

page.

turbo:load Fired after Turbo Drive completes a visit

and the new page is visible.

Disabling Turbo Drive

You can disable Turbo Drive on specific links or forms by

adding the data-turbo="false" attribute.

Example: <a href="/full_page_load" data-

turbo="false">Full Page Load

To disable Turbo Drive completely, remove the

turbo.js script from your application or set

Turbo.session.drive = false; .

Encapsulating Page Sections

Turbo Frames: Allow you to update specific parts of a

page without reloading the entire page. This is achieved

by wrapping sections of your HTML in <turbo-frame>

elements.

Lazy Loading: Turbo Frames can also be used for lazy

loading content. Content within a frame is only loaded

when the frame is scrolled into view (or when explicitly

triggered).

Frame Attributes

i

d

A unique identifier for the frame. Required for

Turbo to target and update the frame.

sr

c

The URL to load the frame’s content from. The

content fetched from this URL will replace the

frame’s current content.

ta

rge

t

Specifies the id of another Turbo Frame to

update after a form submission or link click within

the current frame. This allows you to chain updates

across multiple frames.

Basic Frame Example

<turbo-frame id="user_profile">

 Loading user profile...

</turbo-frame>

<script>

 fetch('/users/123')

 .then(response => response.text())

 .then(html => {

document.getElementById('user_profile').innerH

TML = html;

 });

</script>

In a Rails-like backend, a corresponding users#show

action might render a partial that replaces the

user_profile frame’s contents.

Frame Events

turbo:frame-

load

Fired after a Turbo Frame has loaded

its content.

turbo:frame-

render

Fired after a Turbo Frame has

rendered the content

Asynchronous DOM Updates

Turbo Streams: Deliver asynchronous DOM updates over

WebSocket connections or server-sent events. Streams

are particularly useful for real-time applications or

scenarios where server-side events need to be reflected

in the client-side UI immediately.

Stream Actions: Turbo Streams use actions like append ,

prepend , replace , update , and remove to modify

the DOM.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/708-turbo-js-cheatsheet
http://cheatsheetshero.com/user/all/708-turbo-js-cheatsheet
http://cheatsheetshero.com/user/all/708-turbo-js-cheatsheet
https://cheatsheetshero.com/

Advanced Turbo Techniques

Stream Message Format

Turbo Stream messages are typically sent as HTML

fragments containing <turbo-stream> elements. These

elements specify the action to perform and the target

element to modify.

Example:

<turbo-stream action="append"

target="messages">

 <template>

 <div>New message!</div>

 </template>

</turbo-stream>

The target attribute specifies the id of the element

to modify. The content within the <template> tag is

used to perform the action.

Stream Actions

appen

d

Appends the content to the end of the target

element.

prepe

nd

Prepends the content to the beginning of the

target element.

repla

ce

Replaces the entire target element with the

content.

updat

e

Replaces the content within the target element

with the content.

remov

e

Removes the target element from the DOM.

Using `data-turbo-stream`

You can trigger Turbo Stream updates directly from links

and forms using the data-turbo-stream attribute.

When a link or form with this attribute is clicked or

submitted, Turbo will expect the server to return a Turbo

Stream response.

Example:

<form action="/comments" method="post" data-

turbo-stream="true">

 ...

</form>

Redirects and Turbo

When handling form submissions with Turbo, you can

return a redirect response. Turbo Drive will automatically

follow the redirect and update the page.

If you need to perform additional actions after the

redirect, you can use the turbo:load event.

JavaScript Considerations

Since Turbo Drive prevents full page loads, you need to

ensure that your JavaScript code is compatible with

Turbo. Use event delegation to attach event listeners to

elements that may be replaced during Turbo Drive

updates.

Example:

document.addEventListener('turbo:load', () =>

{

 document.addEventListener('click', '.my-

element', (event) => {

 // Handle click event

 });

});

Caching

Turbo Drive caches pages to improve performance. You

can control caching behavior using meta tags and server-

side headers. Use turbo:before-cache event to modify

the page before caching.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

