
CouchDB Cheatsheet
A comprehensive guide to Apache CouchDB, covering basic concepts, querying, administration, and common tasks.

Core Concepts

Querying with Views

CouchDB API

Basic Definitions

Document A JSON document that is the basic unit of

data in CouchDB. It has a unique _id and

_rev .

Database A collection of documents. Each CouchDB

instance can host multiple databases.

View A function (written in JavaScript or

another language) that transforms

documents into a queryable index. Uses

MapReduce.

MapReduce A programming model for processing large

datasets with a map function that

transforms data and a reduce function that

aggregates the mapped results.

Replication The process of synchronizing databases

between CouchDB instances, allowing for

distributed data storage and offline

access.

Conflicts Occur when the same document is

updated concurrently on different nodes

during replication. CouchDB resolves

conflicts by choosing a winning revision

and storing the conflicting revisions as a

history.

Document Structure

A CouchDB document is a JSON object with special

fields:

_id : Unique identifier for the document (string).

_rev : Revision token (string), used for optimistic

concurrency control. Updated with each

modification.

Other user-defined fields: Contain the actual data.

Example:

{

 "_id": "doc1",

 "_rev": "1-

6484e3cf6594867333363a7b539a0a1b",

 "name": "John Doe",

 "age": 30,

 "city": "New York"

}

Key Concepts Illustrated

Imagine a database of books.

Document: Each book is a document with fields like

title, author, and ISBN.

Database: All book documents are stored in a

database named books .

View: A view could be created to list books by

author or to find books published in a specific year.

Replication: Replicating the books database to

multiple servers ensures data availability and allows

users in different locations to access the book

information.

Creating Views

Views are defined within design documents. A design

document is a special document whose _id starts with

_design/ .

Example:

This creates a view named by_author inside the

books design document. The map function emits the

author as the key and the book title as the value.

{

 "_id": "_design/books",

 "views": {

 "by_author": {

 "map": "function (doc) { if (doc.author)

{ emit(doc.author, doc.title); } }"

 }

 }

}

Querying Views

To query a view, use the following URL:

Example:

This will return all books by John Doe.

Common Query Parameters:

key : Match documents with a specific key.

startkey , endkey : Define a key range.

limit : Limit the number of results.

skip : Skip the first N results.

descending : Return results in descending order.

GET

/<database>/_design/<design_doc>/_view/<view_n

ame>

GET /books/_design/books/_view/by_author?

key="John Doe"

MapReduce Functions

Map

Function

Processes each document and emits

key-value pairs. The emit(key, value)

function is used to create index entries.

Reduce

Function

Aggregates the results of the map

function. It takes keys, values, and a

rereduce flag as input.

Example Map

Function
function (doc) {

 if (doc.type === 'comment') {

 emit(doc.post_id, 1);

 }

}

Example

Reduce

Function

function (keys, values,

rereduce) {

 return sum(values);

}

Database Operations

Create Database
PUT /<database>

Get Database Info
GET /<database>

Delete Database
DELETE /<database>

List All Databases
GET /_all_dbs

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/701-couchdb-cheatsheet
http://cheatsheetshero.com/user/all/701-couchdb-cheatsheet
http://cheatsheetshero.com/user/all/701-couchdb-cheatsheet
https://cheatsheetshero.com/

Administration and Maintenance

Document Operations

Create

Document
POST /<database>

Content-Type: application/json

{ ... }

Get Document
GET /<database>/<document_id>

Update

Document
PUT /<database>/<document_id>

Content-Type: application/json

{ ... }

Delete

Document
DELETE

/<database>/<document_id>?rev=

<revision>

Bulk Operations

Bulk operations allow you to perform multiple document

operations in a single request, improving performance.

POST /<database>/_bulk_docs

Content-Type: application/json

{

 "docs": [

 { ... },

 { ... }

]

}

Configuration

CouchDB is configured through a configuration file

(local.ini) or via the API.

Key Configuration Sections:

[couchdb] : Core CouchDB settings.

[httpd] : HTTP server settings.

[log] : Logging settings.

[replicator] : Replication settings.

[query_server_config] : Javascript query server

settings.

Example Setting:

[httpd]

port = 5984

Replication

CouchDB supports continuous and one-time replication.

Replication can be configured using the _replicator

database or via the command line.

Example Configuration Document in _replicator :

{

 "_id": "replication_job_1",

 "source": "http://source-

couchdb:5984/source_db",

 "target": "http://target-

couchdb:5984/target_db",

 "continuous": true

}

Compaction

Compaction removes unused data and optimizes

database storage. It is triggered automatically, but can

also be initiated manually.

To compact a database:

To compact a design document (and its views):

POST /<database>/_compact

POST /<database>/_compact/<design_document>

Security

Authentication CouchDB supports various

authentication methods, including

Basic Authentication and Cookie

Authentication.

Authorization Access control is managed through

roles. Users can be assigned roles to

grant them specific permissions.

Admin Party A mode where all requests are

processed as an administrator. It is

recommended to disable the admin

party in production environments.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

