

Discrete Mathematics Cheatsheet

A comprehensive cheat sheet covering key concepts in Discrete Mathematics, including set theory, logic, relations, graph theory, and combinatorics. This serves as a quick reference for definitions, formulas, and common problem-solving techniques.

Set Theory

Basic Definitions

Set	A well-defined collection of distinct objects, considered as an object in its own right.
Element	An object in a set. Denoted by \in (e.g., $x \in$ A means x is an element of set A).
Subset	A set A is a subset of B (A \subseteq B) if every element of A is also in B.
Proper Subset	A set A is a proper subset of B (A \subset B) if A \subseteq B and A \neq B.
Universal Set (U)	The set containing all elements under consideration.
Empty Set (Ø)	The set containing no elements. Also denoted by {}.

Set Operations

Union (∪)	$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$
Intersection (∩)	$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$
Difference (-)	$A-B=\{x\mid x\in A \text{ and } x\notin B\}$
Complement (A')	$A' = \{x \mid x \in U \text{ and } x \notin A\}$
Symmetric Difference (⊕)	$A \oplus B = (A - B) \cup (B - A)$
Cartesian Product (×)	$A\times B=\{(a,b)\mid a\in A \text{ and } b\in B\}$

Set Identities

Identity Laws: $A \cup \emptyset = A$ $A \cap U = A$	
Domination Laws: $A \cup U = U$ $A \cap \emptyset = \emptyset$	
Idempotent Laws: $A \cup A = A$ $A \cap A = A$	
Complementation Law: (A')' = A	
Commutative Laws: $A \cup B = B \cup A$ $A \cap B = B \cap A$	
Associative Laws: $A \cup (B \cup C) = (A \cup B) \cup C$ $A \cap (B \cap C) = (A \cap B) \cap C$	

Logic

Propositional Logic

Proposition	A declarative statement that is either true or false, but not both.
Conjunction	$p \wedge q$ is true if both p and q are true; otherwise, it is false.
Disjunction (v)	$p \vee q$ is true if either p or q (or both) are true; it is false only if both are false.
Negation (¬)	¬p is true if p is false, and false if p is true.
Implication (→)	$p \to q$ is false only when p is true and q is false; otherwise, it is true. Also called a conditional statement.
Biconditional (↔)	$p \leftrightarrow q$ is true if p and q have the same truth value (both true or both false).

Logical Equivalences

De Morgan's Laws: $\neg(p \land q) \equiv \neg p \lor \neg q$ $\neg(p \lor q) \equiv \neg p \land \neg q$
Distributive Laws: $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$ $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
Implication Equivalence: $p \rightarrow q \equiv \neg p \vee q$
Biconditional Equivalence: $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$
Commutative Laws: $p \land q \equiv q \land p$ $p \lor q \equiv q \lor p$
Associative Laws:

Predicate Logic

Predicate	A statement involving variables. $P(x)$ is the predicate P at x.
Quantifiers	Symbols that express the extent to which a predicate is true over a range of elements.
Universal Quantifier (∀)	$\forall x P(x)$ means $P(x)$ is true for all x in the domain.
Existential Quantifier (3)	$\exists x P(x)$ means there exists at least one x in the domain for which $P(x)$ is true.
Negation of Quantifiers	$\neg (\forall x P(x)) \equiv \exists x \neg P(x)$ $\neg (\exists x P(x)) \equiv \forall x \neg P(x)$

Relations

Basic Definitions

Relation	A subset of A \times B, where A and B are sets. Represents a relationship between elements of A and B.
Binary Relation	A relation from a set A to itself (a subset of A \times A).
Reflexive Relation	A relation R on A is reflexive if $(a, a) \in R$ for all $a \in A$.
Symmetric Relation	A relation R on A is symmetric if $(a, b) \in R$ implies $(b, a) \in R$.
Transitive Relation	A relation R on A is transitive if $(a, b) \in R$ and $(b, c) \in R$ implies $(a, c) \in R$.
Equivalence Relation	A relation that is reflexive, symmetric, and transitive.

Properties of Relations

 $(p \land q) \land r \equiv p \land (q \land r)$ $(p \lor q) \lor r \equiv p \lor (q \lor r)$

Irreflexive : A relation R on A is irreflexive if $(a, a) \notin R$ for all $a \in A$.
$ \label{eq:Antisymmetric} \textbf{Antisymmetric}: A \ relation \ R \ on \ A \ is antisymmetric \ if \ (a,b) \\ \in R \ and \ (b,a) \in R \ implies \ a = b. $
Partial Order : A relation that is reflexive, antisymmetric, and transitive.
Total Order : A partial order where for every a, b \in A, either (a, b) \in R or (b, a) \in R.

Closures of Relations

Reflexive Closure	The smallest reflexive relation containing R. Add (a, a) for all a not already in the relation.
Symmetric Closure	The smallest symmetric relation containing R. If $(a, b) \in R$, add (b, a) to the relation.
Transitive Closure	The smallest transitive relation containing R. Computed using Warshall's Algorithm.

Graph Theory

Page 1 of 2 https://cheatsheetshero.com

Basic Definitions

Graph	A pair G = (V, E) where V is a set of vertices and E is a set of edges connecting these vertices.
Directed Graph (Digraph)	A graph where edges have a direction. Edges are ordered pairs (u, v) .
Undirected Graph	A graph where edges have no direction. Edges are unordered pairs {u, v}.
Adjacent Vertices	Two vertices are adjacent if they are connected by an edge.
Degree of a Vertex	The number of edges incident to the vertex. In digraphs, indegree is the number of incoming edges, and outdegree is the number of outgoing edges.
Path	A sequence of vertices connected by edges.

Graph Properties

Connected Graph : A graph where there is a path between every pair of vertices.
Complete Graph (Kn): A graph where every pair of distinct vertices is connected by an edge.
Cycle: A path that starts and ends at the same vertex.
Tree: A connected graph with no cycles.
Bipartite Graph : A graph whose vertices can be divided into two disjoint sets U and V such that every edge

Planar Graph: A graph that can be drawn in the plane

connects a vertex in U to one in V.

without any edges crossing.

Graph Representations

Adjacency Matrix	A matrix representing the graph's connections. A[i][j] = 1 if there is an edge from vertex i to vertex j, and 0 otherwise.
Adjacency List	A list of adjacent vertices for each vertex in the graph.

Page 2 of 2 https://cheatsheetshero.com