
Elasticsearch Cheat Sheet
A comprehensive cheat sheet for Elasticsearch, covering essential concepts, query syntax, API endpoints, and common operations.

Core Concepts & API Basics

Query DSL (Domain Specific Language)

Key Concepts

Index A collection of documents with similar

characteristics. Think of it as a database.

Document A JSON document containing fields and

their values. It’s the basic unit of information.

Field A key-value pair within a document. The key

is the field name and the value is the data.

Mapping Defines how a document and its fields are

stored and indexed. Like a schema.

Shard Indexes are divided into shards. Each shard

is a fully-functional and independent “index”

that can be hosted on any node in an

Elasticsearch cluster.

Replica A copy of a shard. Replicas provide

redundancy and increase search capacity.

Basic API Endpoints

PUT /<index_name> - Create an index.

GET /<index_name> - Retrieve index information.

DELETE /<index_name> - Delete an index.

POST /<index_name>/_doc - Index a document.

Elasticsearch will assign an ID.

PUT /<index_name>/_doc/<_id> - Index or update a

document with a specific ID.

GET /<index_name>/_doc/<_id> - Retrieve a document

by ID.

POST /<index_name>/_search - Search documents

within an index.

Common HTTP Methods

GET Retrieve information.

POST Create a new resource or perform an action

(e.g., search).

PUT Create or update a resource at a specific ID.

Replaces the entire document.

DELETE Delete a resource.

Basic Query Structure

The Query DSL is based on JSON. The basic structure is:

{

 "query": {

 "<query_type>": {

 "<field_name>": {

 "<parameter>": "<value>"

 }

 }

 }

}

Match Query

match Analyzes the query and constructs a boolean

query. Good for full-text search.

{

 "query": {

 "match": {

 "title": "quick brown fox"

 }

 }

}

match_p

hrase

Matches exact phrases. The terms must be in

the specified order.

{

 "query": {

 "match_phrase": {

 "message": "this is a test"

 }

 }

}

match_a

ll

Matches all documents. Useful for retrieving

all documents in an index.

{

 "query": {

 "match_all": {}

 }

}

Term Query

ter

m

Finds documents that contain the exact term

specified. Not analyzed.

{

 "query": {

 "term": {

 "user.id": "kimchy"

 }

 }

}

term

s

Finds documents that contain one or more of the

exact terms specified.

{

 "query": {

 "terms": {

 "user.id": ["kimchy", "jordan"]

 }

 }

}

Boolean Query

bo

ol

A query that matches documents matching

boolean combinations of other queries. Uses

must , should , must_not , and filter

clauses.

{

 "query": {

 "bool": {

 "must": [

 { "match": { "title": "brown" }

}

],

 "filter": [

 { "term": { "tags": "search" } }

],

 "must_not": [

 { "range": { "date": { "gte":

"2024-01-01" } } }

],

 "should": [

 { "term": { "license": "pro" } }

],

 "minimum_should_match": 1

 }

 }

}

mu

st

The clause (query) must appear in matching

documents and will contribute to the score.

sh

oul

d

The clause (query) should appear in the matching

document. If the bool query contains no must

or filter clauses, then at least one should

clause must match. Contributes to the score.

mu

st_

no

t

The clause (query) must not appear in the

matching documents. Is executed in filter context

meaning that scoring is ignored and the clause is

considered for caching.

fi

lte

r

The clause (query) must appear in matching

documents. However unlike must the score of

the query will be ignored. Filter clauses are

executed in filter context, meaning that scoring is

ignored and the clause is considered for caching.

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/665-elasticsearch-cheat-sheet
http://cheatsheetshero.com/user/all/665-elasticsearch-cheat-sheet
http://cheatsheetshero.com/user/all/665-elasticsearch-cheat-sheet
https://cheatsheetshero.com/

Aggregations

Mappings & Settings

Aggregation Basics

Aggregations allow you to compute statistics and

analytics over your data. They are similar to SQL GROUP

BY .

{

 "aggs": {

 "<aggregation_name>": {

 "<aggregation_type>": {

 "field": "<field_name>"

 }

 }

 }

}

You can nest aggregations.

Bucket Aggregations

terms Creates buckets based on unique terms

in a field.

{

 "aggs": {

 "popular_tags": {

 "terms": {

 "field":

"tags.keyword",

 "size": 10

 }

 }

 }

}

date_histog

ram

Creates buckets based on date intervals.

{

 "aggs": {

 "articles_per_month": {

 "date_histogram": {

 "field":

"publish_date",

 "calendar_interval":

"month",

 "format": "yyyy-MM-dd"

 }

 }

 }

}

range Creates buckets based on numeric or

date ranges.

{

 "aggs": {

 "price_ranges": {

 "range": {

 "field": "price",

 "ranges": [

 { "to": 50 },

 { "from": 50, "to":

100 },

 { "from": 100 }

]

 }

 }

 }

}

Metric Aggregations

avg Calculates the average of a numeric field.

{

 "aggs": {

 "avg_price": {

 "avg": {

 "field": "price"

 }

 }

 }

}

sum Calculates the sum of a numeric field.

{

 "aggs": {

 "total_sales": {

 "sum": {

 "field": "sales"

 }

 }

 }

}

min Calculates the minimum value of a numeric

field.

{

 "aggs": {

 "min_price": {

 "min": {

 "field": "price"

 }

 }

 }

}

max Calculates the maximum value of a numeric

field.

{

 "aggs": {

 "max_price": {

 "max": {

 "field": "price"

 }

 }

 }

}

cardi

nalit

y

Calculates the approximate number of unique

values in a field. Useful for counting distinct

users.

{

 "aggs": {

 "distinct_users": {

 "cardinality": {

 "field": "user_id"

 }

 }

 }

}

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Mapping Types

text Used for full-text search. Analyzed into

individual terms.

keyword Used for exact-value matching, filtering,

and sorting. Not analyzed.

date Stores dates. Can be formatted.

"format": "yyyy-MM-dd

HH:mm:ss||yyyy-MM-

dd||epoch_millis"

integer ,

long ,

float ,

double

Numeric types.

boolean Stores boolean values (true/false).

object Used for nested JSON objects.

nested Used for arrays of JSON objects. Allows

querying each object in the array

independently.

Explicit Mapping

You can define the mapping explicitly when creating an

index.

PUT /my_index

{

 "mappings": {

 "properties": {

 "title": { "type": "text" },

 "publish_date": { "type": "date",

"format": "yyyy-MM-dd" },

 "author_id": { "type": "keyword" }

 }

 }

}

If no mapping is defined, Elasticsearch will attempt to

infer the mapping dynamically (Dynamic Mapping).

Index Settings

numbe

r_of_s

hards

The number of primary shards an index should

have. Defaults to 1 in newer versions. Can only

be set at index creation.

numbe

r_of_r

eplica

s

The number of replica shards each primary

shard should have. Defaults to 1. Can be

changed dynamically after index creation.

PUT /my_index/_settings

{

 "number_of_replicas": 2

}

analy

sis

Configures analyzers, tokenizers, token filters,

and character filters for text analysis. Allows

for customizing how text is indexed and

searched.

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

