
Amazon Aurora Cheatsheet
A comprehensive guide to Amazon Aurora, covering its architecture, features, SQL commands, and best practices for optimal database management

and performance.

Aurora Fundamentals

SQL Commands & Operations

Management and Monitoring

Best Practices

Overview

Amazon Aurora is a fully managed, MySQL- and

PostgreSQL-compatible, relational database engine. It

combines the performance and availability of high-end

commercial databases with the simplicity and cost-

effectiveness of open-source databases.

Key features include: automatic storage scaling, low-

latency read replicas, point-in-time recovery, and

continuous backup to Amazon S3.

Aurora is designed to offer up to five times better

performance than standard MySQL and up to three times

better performance than standard PostgreSQL.

Architecture

Storage

Layer:

Data is replicated across multiple

Availability Zones (AZs) for enhanced

durability and availability.

Compute

Layer:

Consists of the database instances

(primary and replicas) that perform the

actual query processing.

Networking: Uses the AWS network infrastructure for

communication between the storage and

compute layers, and for client access.

Key Benefits

High Performance: Offers significantly better

performance than standard MySQL and PostgreSQL.

High Availability: Replicates data across multiple

AZs to prevent data loss and minimize downtime.

Scalability: Automatically scales storage as needed,

up to 128 TB per database instance.

Compatibility: Compatible with existing MySQL and

PostgreSQL applications and tools.

Security: Integrates with AWS security services,

such as AWS KMS, for encryption and access

control.

Common SQL Commands

CREATE DATABASE 

database_name;

Creates a new

database.

USE database_name; Selects a database to

use.

CREATE TABLE table_name 

(column1 datatype, column2 

datatype, ...);

Creates a new table

in the selected

database.

INSERT INTO table_name 

(column1, column2, ...) 

VALUES (value1, value2, 

...);

Inserts data into a

table.

SELECT column1, column2, 

... FROM table_name WHERE 

condition;

Retrieves data from a

table.

UPDATE table_name SET 

column1 = value1, column2 = 

value2, ... WHERE 

condition;

Updates existing data

in a table.

DELETE FROM table_name 

WHERE condition;

Deletes data from a

table.

Aurora-Specific SQL Extensions

Aurora introduces some extensions to standard SQL to

enhance performance and manageability. These

extensions are mostly related to parallel query execution

and monitoring.

Examples include:

Parallel Query Execution Hints: Optimize query

execution by providing hints to the optimizer.

Monitoring Tables: Tables for monitoring database

performance.

Working with Read Replicas

Aurora allows you to create read replicas to offload read

traffic from the primary instance. Read replicas can be

created in different AZs or regions for disaster recovery.

To promote a read replica to a standalone instance

(failover), use the AWS Management Console or AWS CLI.

Using AWS Management Console

The AWS Management Console provides a graphical

interface for managing Aurora clusters. You can use it to

create, modify, and delete clusters, instances, and

snapshots.

Key tasks include:

Creating and configuring Aurora clusters

Monitoring database performance using CloudWatch

metrics

Managing security groups and access control

Performing backups and restores

AWS CLI Commands

aws rds create-db-

instance ...

Creates a new Aurora

instance.

aws rds modify-db-

instance ...

Modifies an existing Aurora

instance.

aws rds delete-db-

instance ...

Deletes an Aurora instance.

aws rds create-db-

cluster ...

Creates a new Aurora

cluster.

aws rds describe-db-

instances ...

Describes Aurora instances.

Monitoring with CloudWatch

Amazon CloudWatch provides metrics for monitoring the

performance and health of your Aurora clusters. Key

metrics include CPU utilization, memory usage, disk I/O,

and database connections.

Set up CloudWatch alarms to receive notifications when

certain metrics exceed predefined thresholds.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/642-amazon-aurora-cheatsheet
http://cheatsheetshero.com/user/all/642-amazon-aurora-cheatsheet
http://cheatsheetshero.com/user/all/642-amazon-aurora-cheatsheet
https://cheatsheetshero.com/


Performance Optimization

Right-Sizing Instances: Choose the appropriate

instance size based on your workload requirements.

Optimize Queries: Use indexes, analyze query

execution plans, and rewrite inefficient queries.

Connection Pooling: Use connection pooling to

reduce the overhead of establishing new

connections.

Caching: Implement caching strategies to reduce

database load.

Security Best Practices

Encryption: Enable encryption at rest and in transit.

Access Control: Use IAM roles and security groups

to control access to your Aurora clusters.

Regular Audits: Perform regular security audits to

identify and address potential vulnerabilities.

Patching: Keep your database instances up to date

with the latest security patches.

High Availability and Disaster Recovery

Multi-AZ Deployment: Deploy your Aurora cluster in

multiple Availability Zones for fault tolerance.

Read Replicas: Use read replicas to offload read

traffic and provide a failover target.

Backups: Configure regular backups and test your

restore process.

Disaster Recovery Plan: Develop a disaster recovery

plan and test it regularly.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

