
DevOps Deployment Tools Cheatsheet
A comprehensive cheat sheet covering essential DevOps and Cloud deployment tools, their functionalities, and usage, with practical examples.

Ansible

Terraform

Kubernetes Deployments

Core Concepts

Ansible: An open-source automation tool used for

configuration management, application deployment, task

automation, and IT orchestration.

Playbooks: YAML files that define the tasks to be

executed on managed nodes.

Inventory: A list of managed nodes (hosts) that Ansible

manages, typically defined in a file.

Modules: Reusable, standalone scripts that Ansible uses

to perform tasks on managed nodes.

Roles: A way to organize and reuse Ansible playbooks.

Roles group together related tasks, variables, and

handlers.

Common Commands

ansible --version Check the Ansible version.

ansible all -m ping -i

inventory

Ping all hosts in the

inventory file.

ansible-playbook

playbook.yml -i

inventory

Run an Ansible playbook

against the inventory.

ansible-galaxy install

role_name

Install a role from Ansible

Galaxy.

ansible-vault encrypt

file.yml

Encrypt a file using Ansible

Vault.

Example Playbook

- hosts: webservers

 become: true

 tasks:

 - name: Ensure Apache is installed

 apt:

 name: apache2

 state: present

 - name: Ensure Apache is running

 service:

 name: apache2

 state: started

Key Concepts

Terraform: An infrastructure as code (IaC) tool that

enables you to define and provision infrastructure using a

declarative configuration language.

Providers: Plugins that allow Terraform to interact with

different infrastructure platforms (e.g., AWS, Azure, GCP).

Resources: Components of your infrastructure, such as

virtual machines, networks, and databases.

Modules: Reusable and composable units of Terraform

configuration, similar to functions in programming.

State: Terraform uses a state file to track the current

configuration of your infrastructure.

Common Commands

terraform

init

Initialize a Terraform working directory.

terraform

plan

Show changes required by the current

configuration.

terraform

apply

Apply the changes to the

infrastructure.

terraform

destroy

Destroy the infrastructure managed by

Terraform.

terraform

show

Inspect the current Terraform state.

Example Configuration

terraform {

 required_providers {

 aws = {

 source = "hashicorp/aws"

 version = "~> 4.0"

 }

 }

}

provider "aws" {

 region = "us-west-2"

}

resource "aws_instance" "example" {

 ami = "ami-0c55b9479a3c8c88c" #

Example AMI

 instance_type = "t2.micro"

 tags = {

 Name = "ExampleInstance"

 }

}

Core Components

Deployment: Manages the desired state of your

application by ensuring the specified number of replicas

are running.

Pod: The smallest deployable unit in Kubernetes,

representing a single instance of a running process.

Service: An abstraction that defines a logical set of Pods

and a policy by which to access them.

Namespace: A way to divide cluster resources between

multiple users or teams.

Ingress: Manages external access to the services in a

cluster, typically via HTTP.

Common kubectl Commands

kubectl apply -f

deployment.yaml

Apply a configuration file to

create or update resources.

kubectl get

deployments

List all deployments in the

current namespace.

kubectl describe

deployment <deployment-

name>

Show detailed information

about a deployment.

kubectl scale

deployment <deployment-

name> --replicas=

<number>

Scale the number of

replicas in a deployment.

kubectl delete

deployment <deployment-

name>

Delete a deployment.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/637-devops-deployment-tools-cheatsheet
http://cheatsheetshero.com/user/all/637-devops-deployment-tools-cheatsheet
http://cheatsheetshero.com/user/all/637-devops-deployment-tools-cheatsheet
https://cheatsheetshero.com/

Jenkins

Example Deployment YAML

apiVersion: apps/v1

kind: Deployment

metadata:

 name: nginx-deployment

spec:

 replicas: 3

 selector:

 matchLabels:

 app: nginx

 template:

 metadata:

 labels:

 app: nginx

 spec:

 containers:

 - name: nginx

 image: nginx:1.14.2

 ports:

 - containerPort: 80

Key Features

Jenkins: An open-source automation server. It helps

automate the parts of software development related to

building, testing, and deploying, facilitating continuous

integration and continuous delivery.

Pipelines: Jenkins pipelines allow you to define your entire

build, test, and deployment process as code.

Plugins: Jenkins has a wide variety of plugins available to

extend its functionality, such as integrations with source

control systems, build tools, and deployment platforms.

Jobs: Automated tasks or series of tasks defined within

Jenkins to perform specific actions such as building or

deploying applications.

Nodes/Agents: Machines or containers that Jenkins uses

to execute build jobs.

Pipeline Syntax

pipeline

{ ... }

Defines the overall pipeline structure.

agent {

... }

Specifies where the pipeline will execute

(e.g., any node, a specific label).

stages {

... }

Defines the different stages of the pipeline.

steps {

... }

Contains the actual commands to execute

in each stage.

post {

... }

Defines actions to be performed after the

pipeline, regardless of the outcome.

Example Jenkinsfile

pipeline {

 agent any

 stages {

 stage('Build') {

 steps {

 echo 'Building...'

 }

 }

 stage('Test') {

 steps {

 echo 'Testing...'

 }

 }

 stage('Deploy') {

 steps {

 echo 'Deploying...'

 }

 }

 }

}

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

