A concise guide to understanding and analyzing the time complexity of algorithms, essential for technical interviews and efficient programming.



# **Big O Notation Basics**

### **Common Time Complexities**

| 0(1) - Constant           | Execution time is independent of input size.<br><b>Example:</b> Accessing an element in an array by index.          |
|---------------------------|---------------------------------------------------------------------------------------------------------------------|
| 0(log n) -<br>Logarithmic | Execution time increases logarithmically with input size.<br><b>Example:</b> Binary search.                         |
| 0(n) - Linear             | Execution time increases linearly with input size.<br><b>Example:</b> Looping through an array.                     |
| O(n log n) -<br>Loglinear | Execution time is a combination of linear and logarithmic.<br><b>Example:</b> Merge sort, quicksort (average case). |
| 0(n^2) - Quadratic        | Execution time increases quadratically with input size.<br><b>Example:</b> Nested loops.                            |
| 0(2^n) - Exponential      | Execution time doubles with each addition to the input data set.<br>Example: Recursive Fibonacci calculation.       |
| 0(n!) - Factorial         | Execution time grows factorially with input size.<br><b>Example:</b> Traveling Salesman Problem (brute force).      |

# Understanding Big O

Big O notation describes the **upper bound** of an algorithm's time complexity. It focuses on the worst-case scenario and ignores constant factors and lower-order terms.

When analyzing algorithms, we care about how the execution time grows as the input size increases. Big O helps us compare the scalability of different algorithms.

# Analyzing Code for Time Complexity

### **Basic Operations**

| Arithmetic Operations (+, -, *, /) | 0(1) |
|------------------------------------|------|
| Variable Assignment                | 0(1) |
| Array Indexing                     | 0(1) |
|                                    |      |

### **Control Structures**

| Simple for loop<br>(iterating n times)          | 0(n)                                                                 |
|-------------------------------------------------|----------------------------------------------------------------------|
| Nested for loops<br>(iterating n times<br>each) | 0(n^2)                                                               |
| while loop<br>(dependent on input<br>size)      | Determined by the condition.<br>Could be $0(n)$ , $0(\log n)$ , etc. |
| if-else statements                              | The complexity is determined by the most complex branch.             |

### **Function Calls**

The time complexity of a function call is the time complexity of the function being called. Be mindful of recursive calls!

**Example:** If foo() has a time complexity of O(n), then calling foo() in your code adds O(n) to the overall complexity.

# **Data Structures and Time Complexity**

### **Common Data Structure Operations**

| Array Access (by index)                                     | 0(1)     |
|-------------------------------------------------------------|----------|
| Array Search (unsorted)                                     | 0(n)     |
| Sorted Array Search (Binary Search)                         | O(log n) |
| Linked List Access (by index)                               | 0(n)     |
| Hash Table Insertion/Deletion/Access (average case)         | 0(1)     |
| Binary Search Tree Insertion/Deletion/Search (average case) | O(log n) |
| Heap (min/max) Insertion/Deletion/Access                    | O(log n) |

# **Tips and Best Practices**

### **General Advice**

| Always consider the <b>worst-case scenario</b> when determining time complexity.                                            |
|-----------------------------------------------------------------------------------------------------------------------------|
| Ignore constant factors and lower-order terms. $0(2n)$ is simplified to $0(n)$ and $0(n^2 + n)$ is simplified to $0(n^2)$ . |
| Understand the underlying data structures and algorithms being used. This is crucial for accurate analysis.                 |
| Practice analyzing code snippets to improve your ability to quickly determine time complexity.                              |
| When asked about time complexity in an interview, explain your reasoning clearly and                                        |

#### **Amortized Analysis**

Amortized analysis is a method for analyzing the time complexity of an algorithm that performs a sequence of operations. It averages the time taken over a sequence of operations, even if some operations are very expensive. Example: Dynamic arrays (like ArrayList in Java or vector in C++) have 0(1) amortized time complexity for adding elements, even though resizing the array takes **0(n)** time.

concisely.