
Time Complexity Analysis Cheatsheet
A concise guide to understanding and analyzing the time complexity of algorithms, essential for technical interviews and efficient programming.

Big O Notation Basics

Analyzing Code for Time Complexity

Data Structures and Time Complexity

Tips and Best Practices

Common Time Complexities

O(1) - Constant Execution time is independent of input size.

Example: Accessing an element in an array by index.

O(log n) -

Logarithmic

Execution time increases logarithmically with input size.

Example: Binary search.

O(n) - Linear Execution time increases linearly with input size.

Example: Looping through an array.

O(n log n) -

Loglinear

Execution time is a combination of linear and logarithmic.

Example: Merge sort, quicksort (average case).

O(n^2) - Quadratic Execution time increases quadratically with input size.

Example: Nested loops.

O(2^n) - Exponential Execution time doubles with each addition to the input data

set.

Example: Recursive Fibonacci calculation.

O(n!) - Factorial Execution time grows factorially with input size.

Example: Traveling Salesman Problem (brute force).

Understanding Big O

Big O notation describes the upper bound of an algorithm’s time complexity. It focuses on

the worst-case scenario and ignores constant factors and lower-order terms.

When analyzing algorithms, we care about how the execution time grows as the input size

increases. Big O helps us compare the scalability of different algorithms.

Basic Operations

Arithmetic Operations (+, -, *, /) O(1)

Variable Assignment O(1)

Array Indexing O(1)

Control Structures

Simple for loop

(iterating n times)

O(n)

Nested for loops

(iterating n times

each)

O(n^2)

while loop

(dependent on input

size)

Determined by the condition.

Could be O(n) , O(log n) ,

etc.

if-else statements The complexity is determined

by the most complex branch.

Function Calls

The time complexity of a function call is the time

complexity of the function being called. Be mindful of

recursive calls!

Example: If foo() has a time complexity of O(n) , then

calling foo() in your code adds O(n) to the overall

complexity.

Common Data Structure Operations

Array Access (by index) O(1)

Array Search (unsorted) O(n)

Sorted Array Search (Binary Search) O(log n)

Linked List Access (by index) O(n)

Hash Table Insertion/Deletion/Access (average case) O(1)

Binary Search Tree Insertion/Deletion/Search (average case) O(log n)

Heap (min/max) Insertion/Deletion/Access O(log n)

General Advice

Always consider the worst-case scenario when determining time complexity.

Ignore constant factors and lower-order terms. O(2n) is simplified to O(n) and O(n^2

+ n) is simplified to O(n^2) .

Understand the underlying data structures and algorithms being used. This is crucial for

accurate analysis.

Practice analyzing code snippets to improve your ability to quickly determine time

complexity.

When asked about time complexity in an interview, explain your reasoning clearly and

concisely.

Amortized Analysis

Amortized analysis is a method for analyzing the time complexity of an algorithm that

performs a sequence of operations. It averages the time taken over a sequence of

operations, even if some operations are very expensive.

Example: Dynamic arrays (like ArrayList in Java or vector in C++) have O(1) amortized

time complexity for adding elements, even though resizing the array takes O(n) time.

Page 1 of 1 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/619-time-complexity-analysis-cheatsheet
http://cheatsheetshero.com/user/all/619-time-complexity-analysis-cheatsheet
http://cheatsheetshero.com/user/all/619-time-complexity-analysis-cheatsheet
https://cheatsheetshero.com/

