
Domain-Driven Design (DDD) Cheatsheet
A concise reference for Domain-Driven Design principles, patterns, and practices to help build software that closely reflects the business domain.

Core Concepts

Tactical Patterns

Strategic Patterns

Implementation Considerations

Domain

The domain is the specific subject area to which the user

applies a program. DDD focuses on understanding and

modeling this domain.

Key aspect: Shared understanding between developers

and domain experts.

Ubiquitous Language: A common language used by all

team members (developers, domain experts, etc.) to avoid

misunderstandings.

Key aspect: Improves communication and reduces

ambiguity in code and documentation.

Bounded Context

A bounded context defines the scope in which a

particular domain model applies. It represents a semantic

boundary.

Key aspect: Isolates domain models, preventing them

from becoming overly complex.

Each bounded context should have its own Ubiquitous

Language.

Key aspect: Ensures clarity and consistency within the

context.

Strategic vs. Tactical DDD

Strategic

DDD

Focuses on the big picture: understanding

the overall domain, identifying bounded

contexts, and defining relationships

between them.

Tactical

DDD

Focuses on the implementation details

within a single bounded context: designing

aggregates, entities, value objects, and

domain services.

Entities

An entity is an object with a distinct identity that persists

over time. The identity, rather than the attributes,

distinguishes one entity from another.

Example: A Customer identified by their ID, even if their

address changes.

Entities have a lifecycle and can change state.

Key aspect: Focus on identity, state, and behavior.

Value Objects

A value object is an immutable object defined by its

attributes. Two value objects are considered equal if their

attributes are equal.

Example: An Address consisting of street, city, and zip

code. Changing any part of the address creates a new

Address object.

Value objects are often used to represent concepts that

don’t have a unique identity.

Key aspect: Immutability, equality based on attributes,

and conceptual wholeness.

Aggregates

An aggregate is a cluster of associated objects that are

treated as a single unit for data changes. One entity

within the aggregate is designated as the aggregate root.

Example: An Order aggregate with the Order as the

root, containing OrderItem value objects.

All external access to the aggregate is controlled through

the aggregate root.

Key aspect: Enforces consistency and encapsulates

complexity.

Domain Services

A domain service is a stateless operation that performs a

significant process in the domain that doesn’t naturally fit

within an entity or value object.

Example: A TransferService that transfers money

between two accounts.

Services often involve multiple entities or external

systems.

Key aspect: Represents domain logic that transcends

single objects.

Repositories

A repository provides an abstraction for accessing data

persistence. It acts as a collection-like interface for

domain objects.

Example: A CustomerRepository that provides methods

for finding, adding, and removing Customer entities.

Repositories decouple the domain model from the data

access layer.

Key aspect: Enables easier testing and switching between

persistence mechanisms.

Context Mapping

Context Mapping is the process of defining the relationships between bounded contexts.

Key aspect: Ensures clear understanding of dependencies and interactions between

different parts of the system.

Common context map patterns include:

Partnership: Two contexts collaborate closely and succeed or fail together.

Shared Kernel: Two contexts share a subset of the domain model.

Customer-Supplier: One context provides services to another.

Conformist: One context aligns its model to the upstream context.

Anticorruption Layer: A layer that translates between different models to prevent

corruption of the downstream context.

Subdomains

A subdomain is a specific area within the overall domain. Identifying subdomains helps to

break down the complexity of the problem.

Key aspect: Focus on different areas of expertise and responsibility.

Subdomains can be classified as:

Core Domain: The most important and differentiating part of the business.

Supporting Subdomain: Important but not differentiating.

Generic Subdomain: Not specific to the business and can be purchased off-the-

shelf.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/602-domain-driven-design-ddd-cheatsheet
http://cheatsheetshero.com/user/all/602-domain-driven-design-ddd-cheatsheet
http://cheatsheetshero.com/user/all/602-domain-driven-design-ddd-cheatsheet
https://cheatsheetshero.com/

Event Storming

Event Storming is a workshop-based method for

collaboratively exploring a domain and identifying key

events, commands, and aggregates.

Key aspect: Facilitates communication and shared

understanding between developers and domain experts.

Involves domain experts, developers, and testers working

together to model the domain on a large surface using

sticky notes.

Benefits: Quick way to visualize the domain and identify

potential problems.

CQRS (Command Query Responsibility

Segregation)

CQRS is a pattern that separates read and write

operations for a data store.

Key aspect: Allows for optimization of read and write

models independently.

Commands are used to update data, while queries are

used to retrieve data. This separation can improve

performance and scalability.

Considerations: Increases complexity and requires

eventual consistency for read models.

Eventual Consistency

Eventual Consistency is a consistency model where

updates to data may not be immediately reflected in all

replicas or read models.

Key aspect: Data will eventually become consistent, but

there may be a delay.

Often used in distributed systems and CQRS

architectures.

Considerations: Requires careful handling of potential

data inconsistencies.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

