
Yii Framework Cheatsheet
A concise reference guide to the Yii PHP framework, covering core components, commonly used features, and best practices for efficient web

application development.

Core Concepts & Architecture

Database Interaction

MVC Structure

Model Represents data and business logic.

Interacts with the database.

View Presents the data to the user.

Consists of HTML, CSS, and PHP

code for display.

Controller Handles user requests, interacts with

models, and selects views to render.

Entry Script

(index.php)

The single entry point for all web

requests. Initializes the application.

Application The central object that manages the

overall execution flow.

Components Reusable modules providing specific

functionalities (e.g., database,

session, user).

Application Lifecycle

1. User makes a request (e.g., index.php?

r=post/view&id=123).

2. Entry script (index.php) creates and initializes the

application.

3. Application retrieves request information from

request component.

4. Application creates a controller instance to handle

the request.

5. Controller creates action instance and performs the

action.

6. Action loads relevant data models, possibly with

database interaction.

7. Action renders a view, passing the models as

parameters.

8. View renders the data into HTML.

9. The rendered result is returned to the user.

Configuration

Configuration

Array

Yii applications are configured using

a PHP array, typically located in

config/web.php or

config/console.php .

Components

Configuration

Configures core application

components such as db , cache ,

user , session , etc.

Modules

Configuration

Defines modules and their specific

configurations.

Parameters

Configuration

Defines global application parameters

accessible throughout the

application.

Example
'components' => [

 'db' => [

 'class' =>

'yii\db\Connection',

 'dsn' =>

'mysql:host=localhost;dbname=

mydatabase',

 'username' => 'root',

 'password' => '',

 'charset' => 'utf8',

],

],

Active Record

Active Record (AR) provides an object-oriented interface

for accessing and manipulating data stored in databases.

Each AR class represents a database table, and an AR

instance represents a row in that table.

Defining an AR Class

class Customer extends \yii\db\ActiveRecord

{

 public static function tableName()

 {

 return 'customers';

 }

}

Basic CRUD Operations

Create: $customer = new Customer(); $customer-

>name = 'John Doe'; $customer->email =

'john.doe@example.com'; $customer->save();

Read: $customer = Customer::findOne(123); or

$customers = Customer::findAll(['status' =>

1]);

Update: $customer = Customer::findOne(123);

$customer->email = 'new.email@example.com';

$customer->save();

Delete: $customer = Customer::findOne(123);

$customer->delete();

Query Builder

The Query Builder provides a programmatic and

database-agnostic way to construct SQL queries.

Example:

$customers = (new \yii\db\Query())

 ->select(['id', 'name', 'email'])

 ->from('customers')

 ->where(['status' => 1])

 ->orderBy('name')

 ->limit(10)

 ->all();

Chaining Methods: The Query Builder allows you to chain

methods to build complex queries easily.

Page 1 of 3 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/601-yii-framework-cheatsheet
http://cheatsheetshero.com/user/all/601-yii-framework-cheatsheet
http://cheatsheetshero.com/user/all/601-yii-framework-cheatsheet
https://cheatsheetshero.com/

Working with Views & Controllers

Forms and Input Validation

Migrations

Creating a

Migration

./yii migrate/create

create_users_table

Applying

Migrations

./yii migrate

Reverting

Migrations

./yii migrate/down

Migration Class

Structure
class

m150101_185401_create_users_

table extends

\yii\db\Migration

{

 public function up()

 {

 $this-

>createTable('users', [

 'id' => $this-

>primaryKey(),

 'username' =>

$this->string()->notNull()-

>unique(),

 'email' =>

$this->string()->notNull()-

>unique(),

]);

 }

 public function down()

 {

 $this-

>dropTable('users');

 }

}

Rendering Views

Rendering a

Simple View
$this->render('view',

['model' => $model]);

Rendering a

View with

Layout

$this->render('view',

['model' => $model], 'main');

Rendering a

Partial View
$this->renderPartial('_form',

['model' => $model]);

Accessing

Variables in

Views

Variables passed to the render()

method are available in the view as

local variables (e.g., $model).

Controller Actions

Controller actions are methods within a controller class

that handle specific user requests. They typically perform

tasks such as loading data, processing user input, and

rendering views.

Action Naming Convention: Action names should start

with the word action (e.g., actionCreate ,

actionView).

Example:

public function actionView($id)

{

 $model = $this->findModel($id);

 return $this->render('view', ['model' =>

$model]);

}

Layouts

Main Layout The default layout file, typically located

in views/layouts/main.php , defines

the overall structure of the web page.

Layout

Structure

Layout files typically contain HTML

<html> , <head> , and <body> tags,

as well as placeholders for content and

other dynamic elements.

Rendering

Content in

Layout

The $content variable within the

layout file holds the rendered output of

the view.

Page 2 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

Creating Forms

Forms in Yii are typically created using the

yii\widgets\ActiveForm widget, which simplifies the

process of generating HTML form elements and handling

user input.

Example:

<?php $form = ActiveForm::begin(['id' =>

'login-form']); ?>

 <?= $form->field($model, 'username') ?>

 <?= $form->field($model, 'password')-

>passwordInput() ?>

 <div class="form-group">

 <?= Html::submitButton('Login',

['class' => 'btn btn-primary']) ?>

 </div>

<?php ActiveForm::end(); ?>

Input Validation

Validation

Rules

Define validation rules in the model’s

rules() method. Rules specify which

attributes should be validated and how.

Common

Validators

required , email , string ,

integer , number , boolean , date ,

unique , exist , captcha .

Example:
public function rules()

{

 return [

 [['username',

'password'], 'required'],

 ['email', 'email'],

 ['username', 'string',

'min' => 3, 'max' => 255],

];

}

Handling Form Submission

In the controller action, check if the form has been

submitted and if the model is valid. If so, process the data

and redirect the user.

Example:

public function actionLogin()

{

 $model = new LoginForm();

 if ($model->load(Yii::$app->request-

>post()) && $model->login()) {

 return $this->goHome();

 }

 return $this->render('login', ['model' =>

$model]);

}

Page 3 of 3 https://cheatsheetshero.com

https://cheatsheetshero.com/

