
Travis CI Cheat Sheet
A comprehensive cheat sheet covering essential Travis CI configurations, commands, and best practices for continuous integration and deployment.

Core Concepts & Configuration

Advanced Configuration

Deployment

Tips and Tricks

Basic `.travis.yml` Structure

A basic .travis.yml file specifies the language and

build steps:

language: ruby

rvm:

 - 2.7

before_install:

 - gem install bundler

install:

 - bundle install

script:

 - bundle exec rspec

Key components:

language : Specifies the programming language.

rvm (or equivalent): Specifies the version manager

and versions.

before_install : Commands to run before

installing dependencies.

install : Commands to install dependencies.

script : Commands to run the build/test suite.

Language Support

language:

ruby

Specifies the Ruby language

environment.

language:

node_js

Specifies the Node.js environment.

language:

python

Specifies the Python environment.

language:

java

Specifies the Java environment.

Build Lifecycle Stages

Travis CI build lifecycle consists of distinct stages:

before_install : Prepare the environment.

install : Install dependencies.

before_script : Run commands before the main

script.

script : Run the primary build script (tests, etc.).

after_success / after_failure : Commands to

run based on the script’s success.

after_script : Always runs regardless of build

outcome.

before_deploy : Run before deploying code.

deploy : Deploy the code to a provider.

after_deploy : Run commands after successful

deployment.

Environment Variables

env: Define environment variables for the build.

Can be global or matrix-specific.

env:

 global:

 - secure: ENCRYPTED_PASSWORD

 matrix:

 - TEST_SUITE=unit

 - TEST_SUITE=integration

Secure

Variables

Sensitive data should be encrypted using

the Travis CI CLI and stored as secure:

variables.

Build Matrix

A build matrix allows you to test your code against

multiple configurations.

matrix:

 include:

 - rvm: 2.6

 gemfile: gemfiles/rails-5.2.gemfile

 - rvm: 2.7

 gemfile: gemfiles/rails-6.0.gemfile

You can exclude specific configurations:

matrix:

 exclude:

 - rvm: 2.5

 gemfile: gemfiles/rails-6.0.gemfile

Caching Dependencies

cache: Enable caching to speed up builds by

reusing dependencies.

cache:

 directories:

 - node_modules

 - vendor/bundle

Common

directories

node_modules , vendor/bundle , and

other dependency directories can be

cached.

Basic Deployment Configuration

Travis CI supports deployment to various providers. Here’s

an example for deploying to Heroku:

deploy:

 provider: heroku

 api_key:

 secure: ENCRYPTED_HEROKU_API_KEY

 app: your-heroku-app-name

 on:

 branch: master

Key components:

provider : Specifies the deployment provider.

api_key : Your API key for the provider (encrypted).

app : The name of your application on the provider.

on : Conditions for deployment (e.g., branch).

Conditional Deployment

on: branch:

master

Deploys only when the build is triggered

from the master branch.

on: tags:

true

Deploys only when a tagged commit is

built.

Deployment Providers

Travis CI supports a wide range of deployment providers,

including:

Heroku

AWS (S3, Elastic Beanstalk)

Firebase

GitHub Pages

PyPI

npm

and many more.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/588-travis-ci-cheat-sheet
http://cheatsheetshero.com/user/all/588-travis-ci-cheat-sheet
http://cheatsheetshero.com/user/all/588-travis-ci-cheat-sheet
https://cheatsheetshero.com/

Debugging Travis CI Builds

Debugging failed builds:

Check the Travis CI build logs for error messages.

Enable debug mode by setting travis_debug:

true in your .travis.yml .

Use SSH access for interactive debugging (requires

a paid plan).

Add echo statements in your .travis.yml to

print variable values and execution flow.

Optimizing Build Times

Caching Cache dependencies to reduce

installation time.

Parallelization Run tests in parallel using tools like

parallel_test (for Ruby) or tox

(for Python).

Selective

Testing

Run only the necessary tests based on

changed files.

Common Issues and Solutions

Common issues:

Incorrect rvm or language version.

Missing dependencies.

Test failures due to environment differences.

Deployment failures due to incorrect credentials.

Solutions:

Double-check your .travis.yml configuration.

Ensure all dependencies are listed in your

dependency management file (e.g., Gemfile ,

package.json).

Use environment variables to handle sensitive data.

Test your deployment process locally before pushing

to Travis CI.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

