gI.I;IEEé:H EHU GraphQL API Cheatsheet

GraphQL APIs.

GraphQL Basics

Core Concepts GraphQL vs REST

A comprehensive cheatsheet covering GraphQL syntax, queries, mutations, schema definition, and best practices for designing and implementing

GraphQL: A query language for your APl and a server-side runtime for executing queries GraphQL

by using a type system you define for your data.
4 9 atype sy Y 4 Single endpoint.

Schema: The backbone of any GraphQL API. It defines the structure of the data, including

Client specifies the data required.

the types, fields, and relationships.

Strongly typed schema.

Query: Used to request data from the GraphQL API. Queries specify exactly what data
the client needs, and nothing more.

)) under-fetching).
Mutation: Used to modify data on the server. Mutations can create, update, or delete

data.

Resolver: A function attached to a field in the GraphQL schema. It fetches the data for
that field.

GraphQL Schema Definition Language (SDL)

Defining Types Queries and Mutations in Schema

Efficient data fetching (no over-fetching or

REST

Multiple endpoints.

Server defines the data returned.
Loosely defined data structures.

Potential for over-fetching and under-
fetching.

Interfaces and Unions

Use SDL to define the structure and types of your data. Define entry points for querying and mutating data.

type User { type Query {
id: ID! user(id: ID!): User
name: String! posts: [Post!]
email: String 3

posts: [Post!]
} type Mutation {

createUser(name: String!, email: String):

type Post { User
id: ID! updatePost(id: ID!, title: String): Post
title: String! 3

content: String

author: User!

Scalars: Basic data types like Int , Float , String ,

Boolean ,and ID .
Non-Null: Use ! toindicate a field cannot be null.

Lists: Use [] toindicate a field is a list of values.
GraphQL Queries

Basic Query Structure Arguments

Interface: Defines a set of fields that concrete types

must implement.

interface Node {
id: ID!

type User implements Node {
id: ID!

name: String!

Union: Defines a set of possible types a field can

return.

union SearchResult = User | Post

type Query {
search(term: String!):

[SearchResult]

}

Aliases

A GraphQL query specifies what data to fetch.

query { query {
user(id: "123") { posts(limit: 10, orderBy: "createdAt_DESC")
id {
name id
email title
posts { content
title 3
} }
}
1 The query fetches the 10 most recently created posts.

The query selects the user with id: "123" and
requests the id , name , email ,and posts

(including their title).

Page 1 of 2

Pass arguments to fields to filter or modify the results.

Use aliases to rename fields in the response, especially
when querying the same field with different arguments.

query {
recentPosts: posts(limit: 5) {
title
}
featuredPosts: posts(orderBy: "likes_DESC"
limit: 3) {
title

This query fetches both the 5 most recent posts and the 3
most liked posts, each with their own alias.

https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/585-graphql-api-cheatsheet
http://cheatsheetshero.com/user/all/585-graphql-api-cheatsheet
http://cheatsheetshero.com/user/all/585-graphql-api-cheatsheet
https://cheatsheetshero.com/

Fragments

Use fragments to reuse field selections across multiple

queries.

fragment PostFields on Post {
id
title

content

query {
recentPosts: posts(limit: 5) {
...PostFields

3
featuredPosts: posts(orderBy: "likes_DESC"
limit: 3) {
...PostFields

The PostFields fragment is used in both

recentPosts and featuredPosts queries.
GraphQL Mutations

Basic Mutation Structure

Variables

Updating and Deleting Data

A GraphQL mutation modifies data on the server.

mutation {
createUser(name: "John Doe", email:
"john.doe@example.com") {
id
name

email

This mutation creates a new user with the provided name
and email, and returns the id , name ,and email of

the newly created user.

Page 2 of 2

Use variables to make mutations dynamic.

mutation CreateUser($name: String!, $email:

String!) {
createUser(name: $name, email: $email) {
id
name

email

Variables:

{
"name": "Jane Smith"

"email": "jane.smith@example.com"

This mutation uses variables name and email to create

anew user.

Mutations can also be used to update and delete data.

mutation UpdatePost($id: ID!, $title: String)
{
updatePost(id: $id, title: $title) {
id
title

content

mutation DeletePost($id: ID!) {
deletePost(id: $id) {
id

These mutations update the title of a post and delete a

post, respectively.

https://cheatsheetshero.com

https://cheatsheetshero.com/

