
Recursion and Backtracking Cheat Sheet
A concise guide to recursion and backtracking, fundamental algorithmic techniques, with examples and considerations for interview preparation.

Recursion Fundamentals

Backtracking Techniques

Recursion vs. Iteration

Interview Strategies

Basic Definition

Recursion is a programming technique where a function

calls itself to solve smaller instances of the same problem.

Essential components:

Base Case: The condition that stops the recursion.

Recursive Step: The function calls itself with a

modified input.

Example: Factorial

Code: Explanation:

def

factorial(n)

:

 if n == 0:

 return 1

Base case

 else:

 return n

*

factorial(n-

1) #

Recursive

step

If n is 0, the function returns 1

(base case). Otherwise, it multiplies

n by the factorial of n-1 ,

recursively.

Call Stack

Each recursive call adds a new frame to the call stack.

Deep recursion can lead to stack overflow errors if the

base case is not reached or if the recursion is unbounded.

Understanding the call stack is crucial for debugging

recursive functions. Visualize the call stack to trace the

execution flow and identify potential issues.

Basic Definition

Backtracking is a problem-solving technique that

incrementally builds candidates to the solutions, and

abandons a candidate (“backtracks”) as soon as it

determines that the candidate cannot possibly lead to a

valid solution.

Core idea: Explore all possible solutions by trying every

option. If a solution doesn’t work, revert to the previous

state and try a different option.

Algorithm Steps

1. Choose: Select an option from the available choices.

2. Explore: Recursively explore the consequences of

that choice.

3. Unchoose: If the choice doesn’t lead to a solution,

undo the choice and try another.

Example: N-Queens

Problem

Statement:

Place N chess queens on an N×N

chessboard so that no two queens

threaten each other.

Approach: Try placing queens one by one in each

row. If a placement leads to a conflict,

backtrack and try a different column.

Key Ideas: Use recursion to explore possible

placements.

Use helper functions to check if a

placement is safe (no conflicts).

Backtrack by removing a queen if it

leads to a dead end.

Comparison

Recursion: Iteration:

Elegant and concise

for certain

problems.

Can be less efficient

due to function call

overhead.

Easier to read for

problems with a

recursive structure.

Generally more efficient

in terms of

performance.

Can be more complex to

implement for recursive

problems.

Avoids the risk of stack

overflow.

When to use Recursion?

Use recursion when the problem has a natural recursive

structure, such as tree traversal, graph algorithms, or

problems that can be easily broken down into smaller,

self-similar subproblems.

Consider iteration if performance is critical or if the

recursion depth is likely to be large.

Tail Recursion

Tail recursion is a special form of recursion where the

recursive call is the last operation in the function. Some

compilers can optimize tail recursion into iterative code,

avoiding stack overflow. However, Python does not

optimize tail recursion.

Identifying Recursion/Backtracking Problems

Look for problems that involve searching, exploring

combinations, or making choices at each step. Common

keywords include “combinations”, “permutations”,

“subsets”, “paths”, and “search”.

Structuring Your Solution

1. Define the base case: What condition stops the

recursion?

2. Define the recursive step: How does the function

call itself with a smaller subproblem?

3. Handle edge cases: Consider empty inputs or invalid

states.

Optimization Techniques

Memoization: Store the results of expensive function

calls and reuse them when the same

inputs occur again. Useful for overlapping

subproblems (Dynamic programming).

Pruning: Eliminate branches of the search space

that cannot lead to a valid solution.

Reduces the number of recursive calls.

Page 1 of 1 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/584-recursion-and-backtracking-cheat-sheet
http://cheatsheetshero.com/user/all/584-recursion-and-backtracking-cheat-sheet
http://cheatsheetshero.com/user/all/584-recursion-and-backtracking-cheat-sheet
https://cheatsheetshero.com/

