
Software Architecture: Tools & Concepts
A comprehensive cheat sheet outlining essential tools, concepts, and best practices in software architecture. This guide covers various architectural

patterns, design principles, and related technologies to help architects and developers build robust and scalable systems.

Architectural Patterns

Design Principles

Tools and Technologies

Communication & Messaging

Monolithic Architecture

Description: Traditional architecture where all

components are tightly coupled and deployed as a single

unit.

Pros: Simple to develop, deploy, and test initially.

Cons: Difficult to scale, maintain, and update. Changes in

one part can affect the entire application.

Use Cases: Small to medium-sized applications with

limited complexity and low scalability requirements.

Microservices Architecture

Description: An architectural style that structures an

application as a collection of small, autonomous services,

modeled around a business domain.

Pros: Improved scalability, independent deployment,

technology diversity, fault isolation.

Cons: Increased complexity, distributed debugging,

eventual consistency challenges.

Use Cases: Complex, large-scale applications with high

scalability and availability requirements. Organizations

with multiple development teams.

Layered Architecture

Description: Organizes the application into distinct layers

(e.g., presentation, business logic, data access), each

performing a specific role.

Pros: Separation of concerns, easy to understand, test,

and modify.

Cons: Can lead to tight coupling between layers,

performance overhead if not designed properly.

Use Cases: Applications where a clear separation of

concerns is needed, such as enterprise applications and

web applications.

SOLID Principles

S - Single Responsibility Principle: A class should have

only one reason to change.

O - Open/Closed Principle: Software entities should be

open for extension but closed for modification.

L - Liskov Substitution Principle: Subtypes must be

substitutable for their base types.

I - Interface Segregation Principle: Clients should not be

forced to depend on methods they do not use.

D - Dependency Inversion Principle: Depend upon

Abstractions. Do not depend upon concretions.

Benefits: Improved code maintainability, reusability, and

testability. Reduced coupling and increased cohesion.

DRY Principle

Description: Don’t Repeat Yourself. Avoid duplication of

code and logic by using abstraction and reuse.

Benefits: Reduced code size, easier maintenance, lower

risk of errors.

Example: Use functions, classes, or modules to

encapsulate reusable logic instead of copy-pasting code.

KISS Principle

Description: Keep It Simple, Stupid. Design systems to be

as simple as possible, avoiding unnecessary complexity.

Benefits: Easier to understand, maintain, and debug.

Reduces the risk of introducing bugs.

Example: Prefer straightforward solutions over overly

complex ones, even if they seem less elegant initially.

Containerization (Docker)

Description: Packages software and its dependencies into

isolated containers for consistent execution across

different environments.

Benefits: Improved portability, scalability, and resource

utilization. Simplifies deployment and management.

Key Commands: docker build , docker run ,

docker-compose up

Orchestration (Kubernetes)

Description: Automates the deployment, scaling, and

management of containerized applications.

Benefits: High availability, fault tolerance, and automated

scaling. Simplifies complex deployments.

Key Concepts: Pods, Services, Deployments,

Namespaces

API Gateways

Description: Manages and routes API requests, providing

security, rate limiting, and other essential features.

Benefits: Improved security, traffic management, and API

discoverability. Decouples clients from backend services.

Examples: Kong, Apigee, Tyk

Message Queues

Description: Facilitate asynchronous communication

between services by storing messages in a queue until

they are processed.

Benefits: Decoupling, scalability, and fault tolerance.

Enables reliable communication between services.

Examples: RabbitMQ, Kafka, ActiveMQ

gRPC

Description: A high-performance, open-source universal

RPC framework.

Benefits: Efficient communication, strong typing, and

language interoperability. Suitable for microservices

architectures.

Key Features: Protocol Buffers, HTTP/2, Streaming

RESTful APIs

Description: An architectural style for designing

networked applications based on standard HTTP methods

and resources.

Benefits: Simple, widely adopted, and easy to understand.

Supports caching and scalability.

Key Concepts: Resources, HTTP methods (GET, POST,

PUT, DELETE), Status Codes

Page 1 of 1 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/578-software-architecture-tools-concepts-cheatsheet
http://cheatsheetshero.com/user/all/578-software-architecture-tools-concepts-cheatsheet
http://cheatsheetshero.com/user/all/578-software-architecture-tools-concepts-cheatsheet
https://cheatsheetshero.com/

