
Concurrency Cheat Sheet
A quick reference guide to concurrency concepts and tools, covering threads, processes, synchronization primitives, and common concurrency

patterns.

Fundamentals of Concurrency

Threads and Processes

Synchronization Primitives

Common Concurrency Patterns

Basic Definitions

Concurrency: The ability of a program to execute multiple

tasks seemingly simultaneously.

Parallelism: The actual simultaneous execution of multiple

tasks.

Process: An instance of a program being executed, with

its own memory space.

Thread: A lightweight unit of execution within a process,

sharing the same memory space.

Context Switching: The process of switching the CPU’s

focus between different threads or processes.

Concurrency vs Parallelism

Concurrency Deals with managing multiple tasks at

the same time. It’s about structure.

Tasks may not necessarily run

simultaneously.

Parallelism Deals with actually executing multiple

tasks simultaneously. Requires

multiple cores or processors. It’s

about execution.

Concurrency

enables

parallelism.

Parallelism enhances concurrency.

Benefits of Concurrency

Improved Performance: Parallel execution can

reduce overall execution time.

Responsiveness: Keeps the application responsive

by offloading long-running tasks to background

threads.

Resource Utilization: Makes better use of available

CPU cores.

Thread Management

Creating

Threads

Use threading libraries (e.g., threading in

Python, java.lang.Thread in Java) to

create and start new threads.

Thread

Lifecycle

New -> Runnable -> Running ->

Blocked/Waiting -> Terminated.

Thread

Priorities

Some systems allow setting thread

priorities, but relying on them for

correctness is not recommended.

Joining

Threads

Waiting for a thread to complete its

execution using a join() method.

Process Management

Creating Processes Use process creation mechanisms

(e.g., multiprocessing in

Python, fork() in C) to spawn

new processes.

Inter-Process

Communication

(IPC)

Use techniques like pipes,

message queues, shared memory,

and sockets for communication

between processes.

Process Isolation Processes have their own memory

space, providing isolation and

preventing direct memory access

from other processes.

Threads vs. Processes

Threads: Lightweight, share memory space, faster

context switching, but susceptible to race

conditions.

Processes: Heavyweight, isolated memory space,

slower context switching, more robust.

Choose threads for I/O-bound tasks and processes for

CPU-bound tasks to maximize concurrency and

parallelism.

Locks and Mutexes

Mutex

(Mutual

Exclusion)

A synchronization primitive that provides

exclusive access to a shared resource.

Only one thread can hold the mutex at a

time.

Prevents race conditions.

Lock (Similar

to Mutex)

Often used interchangeably with mutex,

providing exclusive access.

Usage Acquire the lock before accessing the

shared resource, and release it afterward.

Example

(Python)
import threading

lock = threading.Lock()

with lock:

 # Access shared resource

Semaphores

Definition A synchronization primitive that controls

access to a shared resource using a

counter. Can allow more than one thread to

access the resource concurrently (up to the

counter’s limit).

Usage Initialize the semaphore with a counter

value. Threads decrement the counter

when acquiring the resource and increment

it when releasing.

Example

(Python)
import threading

semaphore = threading.Semaphore(2)

Allow 2 threads concurrently

with semaphore:

 # Access shared resource

Condition Variables

Definition A synchronization primitive that allows

threads to wait for a specific condition to

become true. Always used in conjunction

with a lock.

Usage Threads acquire the lock, check the

condition, and wait if the condition is false.

Another thread signals the waiting

thread(s) when the condition becomes

true.

Methods wait() , notify() , notify_all()

Example

(Python)
import threading

condition = threading.Condition()

with condition:

 condition.wait() # Wait for a

signal

 condition.notify() # Signal

another thread

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/574-concurrency-cheat-sheet
http://cheatsheetshero.com/user/all/574-concurrency-cheat-sheet
http://cheatsheetshero.com/user/all/574-concurrency-cheat-sheet
https://cheatsheetshero.com/

Producer-Consumer Pattern

Producers generate data and place it into a shared buffer.

Consumers retrieve data from the buffer and process it.

Synchronization is crucial to prevent race conditions and

buffer overflows/underflows.

Use locks and condition variables to manage access to

the buffer and signal when data is available or space is

available.

Reader-Writer Lock

Description Allows multiple readers to access a

shared resource concurrently, but only

one writer at a time. Improves

performance when reads are much

more frequent than writes.

Implementation Can be implemented using a

combination of mutexes and condition

variables.

Prioritization Reader-preference or writer-

preference can be implemented to

control fairness.

Thread Pool

A pool of worker threads that are created at the start of

the program and reused to execute multiple tasks.

Reduces the overhead of creating and destroying threads

for each task.

Use a queue to submit tasks to the thread pool. Worker

threads retrieve tasks from the queue and execute them.

Asynchronous Programming

Definition A programming paradigm that allows tasks

to be executed independently without

blocking the main thread. Improves

responsiveness and scalability.

Techniques Use asynchronous constructs like futures,

promises, async/await, and callbacks.

Benefits Improved responsiveness, scalability, and

resource utilization.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

