
Xdebug Cheatsheet
A comprehensive cheat sheet for Xdebug, covering installation, configuration, debugging features, and common use cases to streamline PHP

debugging.

Installation and Configuration

Debugging with Xdebug

Installation

1. Download Xdebug: Obtain the appropriate

Xdebug version for your PHP version and

architecture from the official Xdebug

website.

2. Locate PHP Extension Directory: Find the

directory where PHP extensions are stored

(e.g., /usr/lib/php/20190902/). You can

find this with php -i | grep

extension_dir .

3. Move the Xdebug Extension: Place the

downloaded Xdebug extension file (e.g.,

xdebug.so) into the PHP extension

directory.

4. Configure PHP: Edit the php.ini file to

enable Xdebug.

5. Restart Web Server: Restart your web server

(e.g., Apache, Nginx) for the changes to take

effect.

Basic Configuration

zend_e

xtensio

n=xdebu

g.so

Enables the Xdebug extension.

xdebug

.mode=d

ebug

Sets the Xdebug mode to ‘debug’ for

debugging features. Can also use

‘profile’, ‘coverage’, ‘develop’,

‘coverage,debug’.

xdebug

.start_

with_re

quest=y

es

Automatically starts a debugging

session for every request.

xdebug

.client

_host=l

ocalhos

t

Specifies the host where the

debugging client (IDE) is running.

xdebug

.client

_port=9

003

Specifies the port on which Xdebug

attempts to connect to the

debugging client.

xdebug

.log=/t

mp/xdeb

ug.log

Specifies the file where Xdebug logs

its activities. Useful for

troubleshooting.

Configuration Verification

1. Check PHP Info: Create a phpinfo() page

in your web directory and access it through

your browser.

2. Search for Xdebug: Look for the Xdebug

section in the phpinfo() output to verify

that Xdebug is loaded and configured

correctly.

3. Verify Settings: Confirm that the settings

you configured in php.ini are reflected in

the phpinfo() output.

IDE Integration

Xdebug integrates with various IDEs like VS

Code, PhpStorm, and NetBeans. Configure your

IDE to listen for Xdebug connections on the

specified port (e.g., 9003).

VS Code: Install the ‘PHP Debug’ extension and

configure the launch.json file.

PhpStorm: Configure the server and debugging

settings in the ‘Preferences’ or ‘Settings’ panel.

NetBeans: Enable Xdebug support and set the

debugging port in the ‘Options’ panel.

Breakpoints

Setting

Breakpoints

Place breakpoints in your code

where you want the execution to

pause. Use your IDE to set

breakpoints by clicking in the

editor’s gutter.

Conditional

Breakpoints

Set breakpoints that trigger only

when a specific condition is met.

This helps in debugging complex

scenarios.

Line

Breakpoints

Break on specific lines of code to

examine variables and execution

flow.

Exception

Breakpoints

Break when specific exception is

thrown.

Debugging Operations

Step Over: Execute the current line and move to

the next line in the same scope.

Step Into: Enter a function or method call to

debug its execution.

Step Out: Exit the current function or method

and return to the calling scope.

Continue: Resume normal execution until the

next breakpoint or the end of the script.

Evaluate Expression: Evaluate the value of a

variable or expression at the current breakpoint.

Watch Variables: Monitor the values of specific

variables as you step through the code. This helps

track changes and identify issues.

Inspect Variables: Examine the current state of all

variables in the current scope. Useful for

understanding the context of the execution.

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/571-xdebug-cheatsheet
http://cheatsheetshero.com/user/all/571-xdebug-cheatsheet
http://cheatsheetshero.com/user/all/571-xdebug-cheatsheet
https://cheatsheetshero.com/

Advanced Xdebug Features

Troubleshooting

Profiling

Xdebug can generate profiling information to

analyze the performance of your PHP code.

Profiling helps identify bottlenecks and optimize

slow-running code.

Enable profiling by setting

xdebug.mode=profile in php.ini . Specify the

output file location using xdebug.output_dir

and xdebug.profiler_output_name .

Use tools like KCachegrind or Webgrind to

visualize and analyze the profiling data. These

tools provide insights into function call durations,

memory usage, and other performance metrics.

Code Coverage Analysis

Enabling

Coverage

Configure Xdebug to collect code

coverage data by setting

xdebug.mode=coverage in

php.ini .

Generating

Reports

Use PHPUnit with the --

coverage-html or --coverage-

clover options to generate

HTML or XML reports showing

which lines of code are covered by

your tests.

Analyzing

Coverage

Review the generated reports to

identify uncovered code and

improve your test suite.

Remote Debugging

Xdebug supports remote debugging, allowing you

to debug code running on a remote server from

your local IDE. Configure xdebug.client_host

to point to your local machine’s IP address.

Ensure that the remote server can connect to

your local machine on the specified port (e.g.,

9003). You may need to configure firewall rules to

allow the connection.

Use SSH tunneling to create a secure connection

between your local machine and the remote

server. This is especially useful when debugging

code in production environments.

Common Issues

Xdebug Not Loading: Verify that the

zend_extension directive is correctly

configured in php.ini and that the Xdebug

extension file exists in the specified directory.

Also, verify that the loaded php.ini is the one

you are modifying (use phpinfo() to check).

Connection Refused: Ensure that your IDE is

listening for Xdebug connections on the correct

port and that there are no firewall rules blocking

the connection.

Breakpoints Not Hitting: Confirm that the file

paths in your IDE match the actual file paths on

the server. Check that the Xdebug settings in

your IDE are correctly configured.

Slow Performance: Xdebug can slow down script

execution. Disable Xdebug when not debugging,

or use the develop mode introduced in Xdebug

3.

Debugging Techniques

Logging Use xdebug_info() and

xdebug_var_dump() to output

debugging information to the

browser or log files. These functions

can help you inspect variables and

execution flow.

Remote

Session

Start a debugging session from your

browser by adding

XDEBUG_SESSION_START=name to

the URL query string. This triggers

Xdebug to connect to your IDE and

start debugging.

Error

Handling

Use try-catch blocks to handle

exceptions and set breakpoints in

the catch block to debug error

conditions. Configure Xdebug to

break on exceptions to catch errors

early.

Code

Review

Sometimes, the best debugging

technique is to carefully review your

code and look for potential errors.

Use Xdebug in conjunction with

code review to identify and fix

issues.

Xdebug 3 Migration

Xdebug 3 introduces significant changes in

configuration. Replace the old

xdebug.remote_* settings with the new

xdebug.client_* and xdebug.mode settings.

Use xdebug.mode to specify the desired

functionality (e.g., debug , profile ,

coverage). The develop mode is useful for

general development and includes error reporting

and stack traces.

Ensure that your IDE is compatible with Xdebug 3

and that you have updated your debugging

configuration accordingly.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

