
Backbone.js Cheat Sheet
A concise reference for Backbone.js, covering models, views, collections, routers, and events, along with best practices for building structured

JavaScript applications.

Backbone.js Fundamentals

Models & Collections

Views & Events

Routers & Best Practices

Core Concepts

Models: Represent data and business logic.

Views: Handle the user interface and presentation.

Collections: Ordered sets of models.

Routers: Manage application state and navigation.

Events: Enable communication between components.

Backbone.js is a lightweight framework that provides

structure to JavaScript applications by introducing

models with key-value binding and custom events,

collections with a rich API of enumerated functions, views

with declarative event handling, and connects it all to your

existing API over a RESTful JSON interface.

Setting up Backbone

Include

Backbone.js library
<script

src="underscore.js">

</script>

<script src="jquery.js">

</script>

<script src="backbone.js">

</script>

Dependencies Backbone.js depends on

Underscore.js and jQuery (or

Zepto.js).

Backbone Object

The Backbone object is the entry point to the library and

contains all the core functionalities.

It provides methods for creating models, views,

collections, and routers.

Model Definition

var Book = Backbone.Model.extend({

 defaults: {

 title: 'Default Title',

 author: 'Unknown',

 year: 2023

 },

 initialize: function() {

 console.log('A new book has been

created.');

 }

});

Define a Model by extending Backbone.Model .

defaults : Specify default attribute values.

initialize : Constructor logic for the model.

Model Attributes

Get Attribute
book.get('title'); //

Returns the title

Set Attribute
book.set({ title: 'New

Title' });

Check if Attribute

Exists
book.has('title'); //

Returns true/false

Collection Definition

var Library = Backbone.Collection.extend({

 model: Book

});

Define a Collection by extending Backbone.Collection .

model : Specify the type of model the collection

contains.

Collection Operations

Add Model
library.add(book);

Remove Model
library.remove(book);

Fetch Models from

Server
library.fetch();

Filter Models
library.where({ year:

2023 });

View Definition

var BookView = Backbone.View.extend({

 el: '#book-container',

 initialize: function() {

 this.render();

 },

 render: function() {

 this.$el.html('Book Title: ' +

this.model.get('title'));

 return this;

 }

});

Define a View by extending Backbone.View .

el : Specify the DOM element the view is associated

with.

initialize : Constructor logic for the view.

render : Method to render the view’s content.

Event Handling

View Events
events: {

 'click .button':

'handleClick'

},

handleClick: function() {

 console.log('Button

clicked!');

}

Model Events
this.listenTo(this.model,

'change', this.render);

Collection

Events
this.listenTo(this.collection,

'add', this.render);

Rendering Views

Views are rendered by populating the DOM with data

from the model.

Use templates (e.g., Underscore templates, Handlebars)

to generate HTML.

render: function() {

 var template = _.template($('#book-

template').html());

this.$el.html(template(this.model.toJSON()));

 return this;

}

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/566-backbone-js-cheat-sheet
http://cheatsheetshero.com/user/all/566-backbone-js-cheat-sheet
http://cheatsheetshero.com/user/all/566-backbone-js-cheat-sheet
https://cheatsheetshero.com/

Router Definition

var AppRouter = Backbone.Router.extend({

 routes: {

 '': 'home',

 'books/:id': 'bookDetails'

 },

 home: function() {

 console.log('Home route');

 },

 bookDetails: function(id) {

 console.log('Book details for ID: ' + id);

 }

});

Define a Router by extending Backbone.Router .

routes : Map URL routes to handler functions.

Navigation

Navigate to

Route
router.navigate('books/1', {

trigger: true });

Start History
Backbone.history.start();

Best Practices

Use a build tool: Webpack, Parcel, or Browserify to

manage dependencies and bundle your application.

Keep views small and focused: Each view should be

responsible for a small part of the UI.

Use events for communication: Models, views, and

collections can communicate through events.

Follow a consistent coding style: Use a linter to

enforce a consistent coding style.

Use a modular architecture: Break your application

into smaller, reusable modules.

Test your code: Write unit tests and integration tests

to ensure your code is working correctly.

Use a RESTful API: Design your API to follow RESTful

principles.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

