
Linux/Bash Terminal Essentials
A handy cheat sheet for navigating and manipulating the Linux/Bash terminal environment, covering essential commands, shortcuts, and scripting

tips.

Basic Navigation & File Management

Searching & Text Manipulation

System Information & Process Management

Navigation Commands

pwd Print working directory (current directory).

cd

<directo

ry>

Change directory. Use cd .. to go up one

level.

ls List files and directories in the current

directory.

ls -l List files with detailed information

(permissions, size, modification date, etc.).

ls -a List all files, including hidden files (files

starting with .).

ls -t List files sorted by modification time

(newest first).

File Operations

mkdir

<directory

>

Create a new directory.

touch

<file>

Create an empty file or update the

modification timestamp of an existing file.

cp

<source>

<destinati

on>

Copy a file or directory. Use cp -r for

recursive copying of directories.

mv

<source>

<destinati

on>

Move or rename a file or directory.

rm

<file>

Remove a file. Warning: This is permanent!

Use rm -r for directories, and rm -rf

to force removal.

rmdir

<directory

>

Remove an empty directory. Use rm -r

<directory> to remove non-empty

directories.

File Content Viewing

cat

<file>

Display the entire content of a file.

less

<file>

View file content page by page. Use q to

quit.

head

<file>

Display the first few lines of a file (default 10

lines).

tail

<file>

Display the last few lines of a file (default 10

lines).

tail -f

<file>

Display the last few lines and follow the file

as it grows. Useful for log files.

wc

<file>

Word count - displays number of lines,

words, and characters in a file.

Searching

grep

<pattern>

<file>

Search for a pattern within a file. Use

grep -i for case-insensitive search.

grep -r

<pattern>

<directory>

Recursively search for a pattern within

all files in a directory.

find

<directory> -

name

<filename>

Find files by name within a directory.

find

<directory> -

type f

Find all files within a directory.

find

<directory> -

type d

Find all directories within a directory.

locate

<filename>

Find files by name using a pre-built

database. Requires updatedb to

update the database.

Text Manipulation

sed

's/<old>/<new>/

g' <file>

Replace all occurrences of <old>

with <new> in a file using stream

editor.

awk '{print

$1}' <file>

Print the first column of each line in a

file using AWK.

sort <file> Sort the lines of a file.

uniq <file> Remove duplicate lines from a file

(usually used with sort).

cut -d

'<delimiter>' -

f <field> `

Cut out specific fields from a file

based on a delimiter.

tr '[:lower:]'

'[:upper:]'

<file>

Convert all lowercase characters to

uppercase in a file.

Piping and Redirection

| Pipe the output of one command to the input of

another.

Example: ls -l | grep .txt (list files and filter

for .txt files)

> Redirect the output of a command to a file,

overwriting the file if it exists.

Example: ls > files.txt

>

>

Append the output of a command to a file.

Example: echo 'New entry' >> logfile.txt

2

>

Redirect standard error to a file.

Example: command 2> error.log

&

>

Redirect both standard output and standard error

to a file.

Example: command &> output.log

< Redirect the content of a file to the input of a

command.

Example: wc -l < file.txt

Page 1 of 2 https://cheatsheetshero.com

http://cheatsheetshero.com/
http://cheatsheetshero.com/user/all/56-linux-bash-terminal-essentials-cheatsheet
http://cheatsheetshero.com/user/all/56-linux-bash-terminal-essentials-cheatsheet
http://cheatsheetshero.com/user/all/56-linux-bash-terminal-essentials-cheatsheet
https://cheatsheetshero.com/

Bash Scripting Basics

System Information

uname -a Display kernel information.

hostname Display the system’s hostname.

df -h Display disk space usage in a human-

readable format.

du -sh

<directory>

Display the disk usage of a directory in a

human-readable format.

free -m Display memory usage in megabytes.

uptime Show how long the system has been

running.

Process Management

ps aux Display all running processes.

top Display a dynamic real-time view of

running processes.

kill

<PID>

Terminate a process with the given PID

(Process ID).

kill -9

<PID>

Forcefully terminate a process (use with

caution).

bg Put a stopped process in the background.

fg Bring a background process to the

foreground.

User Management

whoami Display the current username.

id Display user and group IDs.

passwd Change the password for the current

user.

sudo

<command>

Execute a command with superuser

privileges.

su

<username>

Switch to another user.

groups Display the groups the current user

belongs to.

Script Structure

All bash scripts should start with a shebang line, which

tells the system which interpreter to use:

#!/bin/bash

Comments are denoted by # :

This is a comment

Variables

Setting a

variable:

variable_name="value" (no spaces

around =)

Example:

NAME="John Doe"

Accessing a

variable:

$variable_name or

${variable_name}

Example:

echo "Hello, $NAME"

Environment

Variables:

Variables that are available system-

wide (e.g., PATH , HOME). Access

them the same way as regular

variables.

Read-only

variables:

readonly variable_name

Conditional Statements

if statement:
if [condition]; then

 commands

elif [condition]; then

 commands

else

 commands

fi

case statement:
case variable in

 pattern1)

 commands

 ;;

 pattern2)

 commands

 ;;

 *)

 commands # Default

 ;;

esac

Looping

for loop:

Example:

for i in {1..5}; do echo $i; done

for variable in item1 item2 ...;

do

 commands

done

while loop:
while [condition]; do

 commands

done

until loop:
until [condition]; do

 commands

done

Functions

Defining a

function:

Or:

function_name () {

 commands

}

function function_name {

 commands

}

Calling a

function:

function_name

Example:

greet () {

 echo "Hello, $1"

}

greet John

Returning a

value:

Use return to return an exit status (0-

255). Use echo to output a string

value.

Page 2 of 2 https://cheatsheetshero.com

https://cheatsheetshero.com/

